Created by: Artificial Incompetence for the Red Cross #1 Challenge in the 2018 Hackathon for Peace, Justice and Security
The network architecture is a pseudo-siamese network with two ImageNet pre-trained Inception_v3 models.
- Python 3.6.5
- Install the required libraries:
pip install -r requirements.txt
python run.py --runName caladrius_2019
python run.py --runName caladrius_2019 --test
There are several parameters, that can be set, the full list is the following:
usage: run.py [-h] [--checkpointPath CHECKPOINTPATH] [--dataPath DATAPATH]
[--runName RUNNAME] [--logStep LOGSTEP]
[--numberOfWorkers NUMBEROFWORKERS] [--disableCuda]
[--cudaDevice CUDADEVICE] [--torchSeed TORCHSEED]
[--inputSize INPUTSIZE] [--numberOfEpochs NUMBEROFEPOCHS]
[--batchSize BATCHSIZE] [--learningRate LEARNINGRATE] [--test]
optional arguments:
-h, --help show this help message and exit
--checkpointPath CHECKPOINTPATH
output path (default: ./runs)
--dataPath DATAPATH data path (default: ./data/Sint-Maarten-2018)
--runName RUNNAME name to identify execution (default: <timestamp>)
--logStep LOGSTEP batch step size for logging information (default: 100)
--numberOfWorkers NUMBEROFWORKERS
number of threads used by data loader (default: 8)
--disableCuda disable the use of CUDA (default: False)
--cudaDevice CUDADEVICE
specify which GPU to use (default: 0)
--torchSeed TORCHSEED
set a torch seed (default: 42)
--inputSize INPUTSIZE
extent of input layer in the network (default: 32)
--numberOfEpochs NUMBEROFEPOCHS
number of epochs for training (default: 100)
--batchSize BATCHSIZE
batch size for training (default: 32)
--learningRate LEARNINGRATE
learning rate for training (default: 0.001)
--test test the model on the test set instead of training
(default: False)