Skip to content

A PyTorch implementation of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE.

Notifications You must be signed in to change notification settings

grossular/graphSAGE-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A PyTorch implementation of GraphSAGE

This package contains a PyTorch implementation of GraphSAGE.

Authors of this code package:

Tianwen Jiang (tjiang2@nd.edu), Tong Zhao (tzhao2@nd.edu), Daheng Wang (dwang8@nd.edu).

Environment settings

  • python==3.6.8
  • pytorch==1.0.0

Basic Usage

Main Parameters:

--dataSet     The input graph dataset. (default: cora)
--agg_func    The aggregate function. (default: Mean aggregater)
--epochs      Number of epochs. (default: 50)
--b_sz        Batch size. (default: 20)
--seed        Random seed. (default: 824)
--unsup_loss  The loss function for unsupervised learning. ('margin' or 'normal', default: normal)
--config      Config file. (default: ./src/experiments.conf)
--cuda        Use GPU if declared.

Learning Method

The user can specify a learning method by --learn_method, 'sup' is for supervised learning, 'unsup' is for unsupervised learning, and 'plus_unsup' is for jointly learning the loss of supervised and unsupervised method.

Example Usage

To run the unsupervised model on Cuda:

python -m src.main --epochs 50 --cuda --learn_method unsup

About

A PyTorch implementation of GraphSAGE. This package contains a PyTorch implementation of GraphSAGE.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.6%
  • Shell 0.4%