- Vehicle Detection using YOLOv7
- Attribute Recognition: Class, color, brand, license plate
- Multi-Camera Tracking using turning patterns
- Google Maps API integration for route and address display
- MySQL backend for detection and metadata
- User-friendly Web Interface
| Area | Tech Stack |
|---|---|
| Frontend | HTML, CSS, JavaScript |
| Backend | Python (Flask) |
| Machine Learning | YOLOv7, OpenCV, Tesseract OCR |
| Database | MySQL |
| APIs | Google Maps Geocode & Route APIs |
- User Input: Enter vehicle details or upload an image.
- AI Detection: YOLOv7 detects vehicle class, color, brand, and license plate.
- Tracking: Tracks turning patterns across adjacent cameras.
- Location: Shows last seen address and route on Google Maps.
- Output: Returns video snippet, CSV log, and live notifications.
- Python 3.8+
- MySQL Server
git clone https://github.com/yourusername/theft-vehicle-detection.git cd theft-vehicle-detectionpython -m venv venv source venv/bin/activate # Windows: venv\Scripts\activate
pip install -r requirements.txt
- Create a database named
vehicle_tracking - Import schema from
/db/schema.sql
python app.pytheft-vehicle-detection/
├── models/
├── static/
├── templates/
├── utils/
├── db/
├── app.py
├── config.py
├── requirements.txt
└── README.html