-
Notifications
You must be signed in to change notification settings - Fork 7
RSeQC Tutorial [optional]
Background: RSeQC is a tool that can be used to generate QC reports for RNA-seq. For more information, please check: Tool Homepage
Objectives: In this section, we will try to generate a QC report for a data set downloaded from RSeQC website.
Files needed:
- Aligned bam file.
- Index file for the aligned bam.
- A RefSeq bed file.
#Copy RSeQC Data
set your working directory and copy the necessary files
mkdir -p ~/workspace/rnaseq/
cp -r ~/CourseData/RNA_data/RSeQC/RSeQC.zip ~/workspace/rnaseq/
cd ~/workspace/rnaseq/
#Unzip the RSeQC file unzip RSeQC.zip cd RSeQC/ Note: You should now see the bam, index, and RefSeq bed files listed
#Run RSeQC commands: bam_stat.py -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam clipping_profile.py -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial geneBody_coverage.py -r hg19_RefSeq.bed -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial infer_experiment.py -r hg19_RefSeq.bed -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam inner_distance.py -r hg19_RefSeq.bed -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial junction_annotation.py -r hg19_RefSeq.bed -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial junction_saturation.py -r hg19_RefSeq.bed -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial read_distribution.py -r hg19_RefSeq.bed -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam read_duplication.py -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial read_GC.py -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial read_NVC.py -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial read_quality.py -i Pairend_nonStrandSpecific_36mer_Human_hg19.bam -o tutorial
#Go through the generated PDFs ls *.pdf
##Note: The current version of this tutorial is now at www.rnaseq.wiki
Table of Contents
Module 0: Authors | Citation | Syntax | Intro to AWS | Log into AWS | Unix | Environment | Resources
Module 1: Installation | Reference Genomes | Annotations | Indexing | Data | Data QC
Module 2: Adapter Trim | Alignment | IGV | Alignment Visualization | Alignment QC
Module 3: Expression | Differential Expression | DE Visualization
Module 4: Ref Guided | De novo | Merging | Differential Splicing | Splicing Visualization
Module 5: Kallisto
Appendix: Abbreviations | Lectures | Practical Exercise Solutions | Integrated Assignment | Proposed Improvements | AWS Setup