You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Given a singly linked list, return a random node's value from the linked list. Each node must have the same probability of being chosen.
Follow up:
What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space?
Example:
// Init a singly linked list [1,2,3].
ListNode head = new ListNode(1);
head.next = new ListNode(2);
head.next.next = new ListNode(3);
Solution solution = new Solution(head);
// getRandom() should return either 1, 2, or 3 randomly. Each element should have equal probability of returning.
solution.getRandom();
class Solution {
public:
Solution(ListNode* head) {
len = 0;
ListNode *cur = head;
this->head = head;
while (cur) {
++len;
cur = cur->next;
}
}
int getRandom() {
int t = rand() % len;
ListNode *cur = head;
while (t) {
--t;
cur = cur->next;
}
return cur->val;
}
private:
int len;
ListNode *head;
};
Follow up 中说链表可能很长,我们没法提前知道长度,这里用到了著名了 水塘抽样 Reservoir Sampling 的思路,由于限定了 head 一定存在,所以先让返回值 res 等于 head 的节点值,然后让 cur 指向 head 的下一个节点,定义一个变量i,初始化为2,若 cur 不为空则开始循环,在 [0, i - 1] 中取一个随机数,如果取出来0,则更新 res 为当前的 cur 的节点值,然后此时i自增一,cur 指向其下一个位置,这里其实相当于维护了一个大小为1的水塘,然后随机数生成为0的话,交换水塘中的值和当前遍历到的值,这样可以保证每个数字的概率相等,参见代码如下:
解法二:
class Solution {
public:
Solution(ListNode* head) {
this->head = head;
}
int getRandom() {
int res = head->val, i = 2;
ListNode *cur = head->next;
while (cur) {
int j = rand() % i;
if (j == 0) res = cur->val;
++i;
cur = cur->next;
}
return res;
}
private:
ListNode *head;
};
Given a singly linked list, return a random node's value from the linked list. Each node must have the same probability of being chosen.
Follow up:
What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space?
Example:
这道题给了我们一个链表,让随机返回一个节点,那么最直接的方法就是先统计出链表的长度,然后根据长度随机生成一个位置,然后从开头遍历到这个位置即可,参见代码如下:
解法一:
Follow up 中说链表可能很长,我们没法提前知道长度,这里用到了著名了 水塘抽样 Reservoir Sampling 的思路,由于限定了 head 一定存在,所以先让返回值 res 等于 head 的节点值,然后让 cur 指向 head 的下一个节点,定义一个变量i,初始化为2,若 cur 不为空则开始循环,在 [0, i - 1] 中取一个随机数,如果取出来0,则更新 res 为当前的 cur 的节点值,然后此时i自增一,cur 指向其下一个位置,这里其实相当于维护了一个大小为1的水塘,然后随机数生成为0的话,交换水塘中的值和当前遍历到的值,这样可以保证每个数字的概率相等,参见代码如下:
解法二:
Github 同步地址:
#382
类似题目:
Random Pick Index
参考资料:
https://leetcode.com/problems/linked-list-random-node/
https://leetcode.com/problems/linked-list-random-node/discuss/85662/Java-Solution-with-cases-explain
https://leetcode.com/problems/linked-list-random-node/discuss/85659/Brief-explanation-for-Reservoir-Sampling
https://leetcode.com/problems/linked-list-random-node/discuss/85701/O(n)-Time-and-O(1)-Space-Java-Solution
https://leetcode.com/problems/linked-list-random-node/discuss/85690/using-reservoir-sampling-o1-space-on-time-complexityuff0cc
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: