Skip to content
This repository was archived by the owner on Sep 3, 2022. It is now read-only.

new preprocessing and training for structured data #160

Merged
merged 16 commits into from
Feb 7, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
493 changes: 226 additions & 267 deletions solutionbox/structured_data/datalab_solutions/structured_data/_package.py

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import cloud_preprocess
import local_preprocess
Original file line number Diff line number Diff line change
@@ -0,0 +1,264 @@
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import json
import os
import sys

from tensorflow.python.lib.io import file_io

INPUT_FEATURES_FILE = 'input_features.json'
SCHEMA_FILE = 'schema.json'

NUMERICAL_ANALYSIS_FILE = 'numerical_analysis.json'
CATEGORICAL_ANALYSIS_FILE = 'vocab_%s.csv'


def parse_arguments(argv):
"""Parse command line arguments.

Args:
argv: list of command line arguments, includeing programe name.

Returns:
An argparse Namespace object.

Raises:
ValueError: for bad parameters
"""
parser = argparse.ArgumentParser(
description='Runs Preprocessing on structured data.')
parser.add_argument('--output_dir',
type=str,
required=True,
help='Google Cloud Storage which to place outputs.')
parser.add_argument('--input_feature_file',
type=str,
required=True,
help=('Json file containing feature types'))

parser.add_argument('--schema_file',
type=str,
required=False,
help=('BigQuery json schema file'))
parser.add_argument('--input_file_pattern',
type=str,
required=False,
help='Input CSV file names. May contain a file pattern')

# If using bigquery table
# TODO(brandondutra): maybe also support an sql input, so the table can be
# ad-hoc.
parser.add_argument('--bigquery_table',
type=str,
required=False,
help=('project:dataset.table_name'))

args = parser.parse_args(args=argv[1:])
print(args)

if not args.output_dir.startswith('gs://'):
raise ValueError('--output_dir must point to a location on GCS')

if args.bigquery_table:
if args.schema_file or args.input_file_pattern:
raise ValueError('If using --bigquery_table, then --schema_file and '
'--input_file_pattern, '
'are not needed.')
else:
if not args.schema_file or not args.input_file_pattern:
raise ValueError('If not using --bigquery_table, then --schema_file and '
'--input_file_pattern '
'are required.')

if not args.input_file_pattern.startswith('gs://'):
raise ValueError('--input_file_pattern must point to files on GCS')

return args


def parse_table_name(bigquery_table):
"""Giving a string a:b.c, returns b.c.

Args:
bigquery_table: full table name project_id:dataset:table

Returns:
dataset:table

Raises:
ValueError: if a, b, or c contain the character ':'.
"""

id_name = bigquery_table.split(':')
if len(id_name) != 2:
raise ValueError('Bigquery table name should be in the form '
'project_id:dataset.table_name. Got %s' % bigquery_table)
return id_name[1]


def run_numerical_analysis(table, args, feature_types):
"""Find min/max values for the numerical columns and writes a json file.

Args:
table: Reference to FederatedTable if bigquery_table is false.
args: the command line args
feature_types: python object of the feature types file.
"""
import datalab.bigquery as bq

# Get list of numerical columns.
numerical_columns = []
for name, config in feature_types.iteritems():
if config['type'] == 'numerical':
numerical_columns.append(name)

# Run the numerical analysis
if numerical_columns:
sys.stdout.write('Running numerical analysis...')
max_min = [
'max({name}) as max_{name}, min({name}) as min_{name}'.format(name=name)
for name in numerical_columns]
if args.bigquery_table:
sql = 'SELECT %s from %s' % (', '.join(max_min),
parse_table_name(args.bigquery_table))
numerical_results = bq.Query(sql).to_dataframe()
else:
sql = 'SELECT %s from csv_table' % ', '.join(max_min)
query = bq.Query(sql, data_sources={'csv_table': table})
numerical_results = query.to_dataframe()

# Convert the numerical results to a json file.
results_dict = {}
for name in numerical_columns:
results_dict[name] = {'max': numerical_results.iloc[0]['max_%s' % name],
'min': numerical_results.iloc[0]['min_%s' % name]}

file_io.write_string_to_file(
os.path.join(args.output_dir, NUMERICAL_ANALYSIS_FILE),
json.dumps(results_dict, indent=2, separators=(',', ': ')))

sys.stdout.write('done.\n')


def run_categorical_analysis(table, args, feature_types):
"""Find vocab values for the categorical columns and writes a csv file.

The vocab files are in the from
index,categorical_column_name
0,'abc'
1,'def'
2,'ghi'
...

Args:
table: Reference to FederatedTable if bigquery_table is false.
args: the command line args
feature_types: python object of the feature types file.
"""
import datalab.bigquery as bq
categorical_columns = []
for name, config in feature_types.iteritems():
if config['type'] == 'categorical':
categorical_columns.append(name)

jobs = []
if categorical_columns:
sys.stdout.write('Running categorical analysis...')
for name in categorical_columns:
if args.bigquery_table:
table_name = parse_table_name(args.bigquery_table)
else:
table_name = 'table_name'

sql = """
SELECT
{name},
FROM
{table}
WHERE
{name} IS NOT NULL
GROUP BY
{name}
""".format(name=name, table=table_name)
out_file = os.path.join(args.output_dir,
CATEGORICAL_ANALYSIS_FILE % name)

if args.bigquery_table:
jobs.append(bq.Query(sql).extract_async(out_file, csv_header=False))
else:
query = bq.Query(sql, data_sources={table_name: table})
jobs.append(query.extract_async(out_file, csv_header=False))

for job in jobs:
job.wait()

sys.stdout.write('done.\n')


def run_analysis(args):
"""Builds an analysis file for training.

Uses BiqQuery tables to do the analysis.

Args:
args: command line args
"""
import datalab.bigquery as bq
if args.bigquery_table:
table = bq.Table(args.bigquery_table)
else:
schema_list = json.loads(file_io.read_file_to_string(args.schema_file))
table = bq.FederatedTable().from_storage(
source=args.input_file_pattern,
source_format='csv',
ignore_unknown_values=False,
max_bad_records=0,
compressed=False,
schema=bq.Schema(schema_list))

feature_types = json.loads(
file_io.read_file_to_string(args.input_feature_file))

run_numerical_analysis(table, args, feature_types)
run_categorical_analysis(table, args, feature_types)

# Save a copy of the input types to the output location.
file_io.copy(args.input_feature_file,
os.path.join(args.output_dir, INPUT_FEATURES_FILE),
overwrite=True)

# Save a copy of the schema to the output location.
if args.schema_file:
file_io.copy(args.schema_file,
os.path.join(args.output_dir, SCHEMA_FILE),
overwrite=True)
else:
file_io.write_string_to_file(
os.path.join(args.output_dir, SCHEMA_FILE),
json.dumps(table.schema._bq_schema, indent=2, separators=(',', ': ')))


def main(argv=None):
args = parse_arguments(sys.argv if argv is None else argv)
run_analysis(args)


if __name__ == '__main__':
main()
Loading