Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump the pip group across 2 directories with 4 updates #19

Open
wants to merge 1 commit into
base: master
Choose a base branch
from

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github May 20, 2024

Bumps the pip group with 1 update in the /biggan_imagenet directory: tensorflow-gpu.
Bumps the pip group with 4 updates in the /stylegan2 directory: tensorflow-gpu, tqdm, requests and pillow.

Updates tensorflow-gpu from 1.14 to 2.12.0

Release notes

Sourced from tensorflow-gpu's releases.

TensorFlow 2.12.0

Release 2.12.0

TensorFlow

Breaking Changes

  • Build, Compilation and Packaging

    • Removed redundant packages tensorflow-gpu and tf-nightly-gpu. These packages were removed and replaced with packages that direct users to switch to tensorflow or tf-nightly respectively. Since TensorFlow 2.1, the only difference between these two sets of packages was their names, so there is no loss of functionality or GPU support. See https://pypi.org/project/tensorflow-gpu for more details.
  • tf.function:

    • tf.function now uses the Python inspect library directly for parsing the signature of the Python function it is decorated on. This change may break code where the function signature is malformed, but was ignored previously, such as:
      • Using functools.wraps on a function with different signature
      • Using functools.partial with an invalid tf.function input
    • tf.function now enforces input parameter names to be valid Python identifiers. Incompatible names are automatically sanitized similarly to existing SavedModel signature behavior.
    • Parameterless tf.functions are assumed to have an empty input_signature instead of an undefined one even if the input_signature is unspecified.
    • tf.types.experimental.TraceType now requires an additional placeholder_value method to be defined.
    • tf.function now traces with placeholder values generated by TraceType instead of the value itself.
  • Experimental APIs tf.config.experimental.enable_mlir_graph_optimization and tf.config.experimental.disable_mlir_graph_optimization were removed.

Major Features and Improvements

  • Support for Python 3.11 has been added.

  • Support for Python 3.7 has been removed. We are not releasing any more patches for Python 3.7.

  • tf.lite:

    • Add 16-bit float type support for built-in op fill.
    • Transpose now supports 6D tensors.
    • Float LSTM now supports diagonal recurrent tensors: https://arxiv.org/abs/1903.08023
  • tf.experimental.dtensor:

    • Coordination service now works with dtensor.initialize_accelerator_system, and enabled by default.
    • Add tf.experimental.dtensor.is_dtensor to check if a tensor is a DTensor instance.
  • tf.data:

    • Added support for alternative checkpointing protocol which makes it possible to checkpoint the state of the input pipeline without having to store the contents of internal buffers. The new functionality can be enabled through the experimental_symbolic_checkpoint option of tf.data.Options().
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.random() operation, which controls whether the sequence of generated random numbers should be re-randomized every epoch or not (the default behavior). If seed is set and rerandomize_each_iteration=True, the random() operation will produce a different (deterministic) sequence of numbers every epoch.
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.sample_from_datasets() operation, which controls whether the sequence of generated random numbers used for sampling should be re-randomized every epoch or not. If seed is set and rerandomize_each_iteration=True, the sample_from_datasets() operation will use a different (deterministic) sequence of numbers every epoch.
  • tf.test:

    • Added tf.test.experimental.sync_devices, which is useful for accurately measuring performance in benchmarks.
  • tf.experimental.dtensor:

... (truncated)

Changelog

Sourced from tensorflow-gpu's changelog.

Release 2.12.0

Breaking Changes

  • Build, Compilation and Packaging

    • Removed redundant packages tensorflow-gpu and tf-nightly-gpu. These packages were removed and replaced with packages that direct users to switch to tensorflow or tf-nightly respectively. Since TensorFlow 2.1, the only difference between these two sets of packages was their names, so there is no loss of functionality or GPU support. See https://pypi.org/project/tensorflow-gpu for more details.
  • tf.function:

    • tf.function now uses the Python inspect library directly for parsing the signature of the Python function it is decorated on. This change may break code where the function signature is malformed, but was ignored previously, such as:
      • Using functools.wraps on a function with different signature
      • Using functools.partial with an invalid tf.function input
    • tf.function now enforces input parameter names to be valid Python identifiers. Incompatible names are automatically sanitized similarly to existing SavedModel signature behavior.
    • Parameterless tf.functions are assumed to have an empty input_signature instead of an undefined one even if the input_signature is unspecified.
    • tf.types.experimental.TraceType now requires an additional placeholder_value method to be defined.
    • tf.function now traces with placeholder values generated by TraceType instead of the value itself.
  • Experimental APIs tf.config.experimental.enable_mlir_graph_optimization and tf.config.experimental.disable_mlir_graph_optimization were removed.

Major Features and Improvements

  • Support for Python 3.11 has been added.

  • Support for Python 3.7 has been removed. We are not releasing any more patches for Python 3.7.

  • tf.lite:

    • Add 16-bit float type support for built-in op fill.
    • Transpose now supports 6D tensors.
    • Float LSTM now supports diagonal recurrent tensors: https://arxiv.org/abs/1903.08023
  • tf.experimental.dtensor:

    • Coordination service now works with dtensor.initialize_accelerator_system, and enabled by default.
    • Add tf.experimental.dtensor.is_dtensor to check if a tensor is a DTensor instance.
  • tf.data:

    • Added support for alternative checkpointing protocol which makes it possible to checkpoint the state of the input pipeline without having to store the contents of internal buffers. The new functionality can be enabled through the experimental_symbolic_checkpoint option of tf.data.Options().
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.random() operation, which controls whether the sequence of generated random numbers should be re-randomized every epoch or not (the default behavior). If seed is set and rerandomize_each_iteration=True, the random() operation will produce a different (deterministic) sequence of numbers every epoch.
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.sample_from_datasets() operation, which controls whether the sequence of generated random numbers used for sampling should be re-randomized every epoch or not. If seed is set and rerandomize_each_iteration=True, the sample_from_datasets() operation will use a different (deterministic) sequence of numbers every epoch.
  • tf.test:

    • Added tf.test.experimental.sync_devices, which is useful for accurately measuring performance in benchmarks.
  • tf.experimental.dtensor:

    • Added experimental support to ReduceScatter fuse on GPU (NCCL).

... (truncated)

Commits
  • 0db597d Merge pull request #60051 from tensorflow/venkat2469-patch-1
  • 1a12f59 Update RELEASE.md
  • aa4d558 Merge pull request #60050 from tensorflow/venkat-patch-6
  • bd1ab8a Update the security section in RELEASE.md
  • 4905be0 Merge pull request #60049 from tensorflow/venkat-patch-5
  • 9f96caa Update setup.py on TF release branch with released version of Estimator and k...
  • e719b6b Update Relese.md (#60033)
  • 64a9d54 Merge pull request #60017 from tensorflow/joefernandez-patch-2.12-release-notes
  • 7a4ebfd Update RELEASE.md
  • e0e10a9 Merge pull request #59988 from tensorflow-jenkins/version-numbers-2.12.0-8756
  • Additional commits viewable in compare view

Updates tensorflow-gpu from 1.14 to 2.12.0

Release notes

Sourced from tensorflow-gpu's releases.

TensorFlow 2.12.0

Release 2.12.0

TensorFlow

Breaking Changes

  • Build, Compilation and Packaging

    • Removed redundant packages tensorflow-gpu and tf-nightly-gpu. These packages were removed and replaced with packages that direct users to switch to tensorflow or tf-nightly respectively. Since TensorFlow 2.1, the only difference between these two sets of packages was their names, so there is no loss of functionality or GPU support. See https://pypi.org/project/tensorflow-gpu for more details.
  • tf.function:

    • tf.function now uses the Python inspect library directly for parsing the signature of the Python function it is decorated on. This change may break code where the function signature is malformed, but was ignored previously, such as:
      • Using functools.wraps on a function with different signature
      • Using functools.partial with an invalid tf.function input
    • tf.function now enforces input parameter names to be valid Python identifiers. Incompatible names are automatically sanitized similarly to existing SavedModel signature behavior.
    • Parameterless tf.functions are assumed to have an empty input_signature instead of an undefined one even if the input_signature is unspecified.
    • tf.types.experimental.TraceType now requires an additional placeholder_value method to be defined.
    • tf.function now traces with placeholder values generated by TraceType instead of the value itself.
  • Experimental APIs tf.config.experimental.enable_mlir_graph_optimization and tf.config.experimental.disable_mlir_graph_optimization were removed.

Major Features and Improvements

  • Support for Python 3.11 has been added.

  • Support for Python 3.7 has been removed. We are not releasing any more patches for Python 3.7.

  • tf.lite:

    • Add 16-bit float type support for built-in op fill.
    • Transpose now supports 6D tensors.
    • Float LSTM now supports diagonal recurrent tensors: https://arxiv.org/abs/1903.08023
  • tf.experimental.dtensor:

    • Coordination service now works with dtensor.initialize_accelerator_system, and enabled by default.
    • Add tf.experimental.dtensor.is_dtensor to check if a tensor is a DTensor instance.
  • tf.data:

    • Added support for alternative checkpointing protocol which makes it possible to checkpoint the state of the input pipeline without having to store the contents of internal buffers. The new functionality can be enabled through the experimental_symbolic_checkpoint option of tf.data.Options().
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.random() operation, which controls whether the sequence of generated random numbers should be re-randomized every epoch or not (the default behavior). If seed is set and rerandomize_each_iteration=True, the random() operation will produce a different (deterministic) sequence of numbers every epoch.
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.sample_from_datasets() operation, which controls whether the sequence of generated random numbers used for sampling should be re-randomized every epoch or not. If seed is set and rerandomize_each_iteration=True, the sample_from_datasets() operation will use a different (deterministic) sequence of numbers every epoch.
  • tf.test:

    • Added tf.test.experimental.sync_devices, which is useful for accurately measuring performance in benchmarks.
  • tf.experimental.dtensor:

... (truncated)

Changelog

Sourced from tensorflow-gpu's changelog.

Release 2.12.0

Breaking Changes

  • Build, Compilation and Packaging

    • Removed redundant packages tensorflow-gpu and tf-nightly-gpu. These packages were removed and replaced with packages that direct users to switch to tensorflow or tf-nightly respectively. Since TensorFlow 2.1, the only difference between these two sets of packages was their names, so there is no loss of functionality or GPU support. See https://pypi.org/project/tensorflow-gpu for more details.
  • tf.function:

    • tf.function now uses the Python inspect library directly for parsing the signature of the Python function it is decorated on. This change may break code where the function signature is malformed, but was ignored previously, such as:
      • Using functools.wraps on a function with different signature
      • Using functools.partial with an invalid tf.function input
    • tf.function now enforces input parameter names to be valid Python identifiers. Incompatible names are automatically sanitized similarly to existing SavedModel signature behavior.
    • Parameterless tf.functions are assumed to have an empty input_signature instead of an undefined one even if the input_signature is unspecified.
    • tf.types.experimental.TraceType now requires an additional placeholder_value method to be defined.
    • tf.function now traces with placeholder values generated by TraceType instead of the value itself.
  • Experimental APIs tf.config.experimental.enable_mlir_graph_optimization and tf.config.experimental.disable_mlir_graph_optimization were removed.

Major Features and Improvements

  • Support for Python 3.11 has been added.

  • Support for Python 3.7 has been removed. We are not releasing any more patches for Python 3.7.

  • tf.lite:

    • Add 16-bit float type support for built-in op fill.
    • Transpose now supports 6D tensors.
    • Float LSTM now supports diagonal recurrent tensors: https://arxiv.org/abs/1903.08023
  • tf.experimental.dtensor:

    • Coordination service now works with dtensor.initialize_accelerator_system, and enabled by default.
    • Add tf.experimental.dtensor.is_dtensor to check if a tensor is a DTensor instance.
  • tf.data:

    • Added support for alternative checkpointing protocol which makes it possible to checkpoint the state of the input pipeline without having to store the contents of internal buffers. The new functionality can be enabled through the experimental_symbolic_checkpoint option of tf.data.Options().
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.random() operation, which controls whether the sequence of generated random numbers should be re-randomized every epoch or not (the default behavior). If seed is set and rerandomize_each_iteration=True, the random() operation will produce a different (deterministic) sequence of numbers every epoch.
    • Added a new rerandomize_each_iteration argument for the tf.data.Dataset.sample_from_datasets() operation, which controls whether the sequence of generated random numbers used for sampling should be re-randomized every epoch or not. If seed is set and rerandomize_each_iteration=True, the sample_from_datasets() operation will use a different (deterministic) sequence of numbers every epoch.
  • tf.test:

    • Added tf.test.experimental.sync_devices, which is useful for accurately measuring performance in benchmarks.
  • tf.experimental.dtensor:

    • Added experimental support to ReduceScatter fuse on GPU (NCCL).

... (truncated)

Commits
  • 0db597d Merge pull request #60051 from tensorflow/venkat2469-patch-1
  • 1a12f59 Update RELEASE.md
  • aa4d558 Merge pull request #60050 from tensorflow/venkat-patch-6
  • bd1ab8a Update the security section in RELEASE.md
  • 4905be0 Merge pull request #60049 from tensorflow/venkat-patch-5
  • 9f96caa Update setup.py on TF release branch with released version of Estimator and k...
  • e719b6b Update Relese.md (#60033)
  • 64a9d54 Merge pull request #60017 from tensorflow/joefernandez-patch-2.12-release-notes
  • 7a4ebfd Update RELEASE.md
  • e0e10a9 Merge pull request #59988 from tensorflow-jenkins/version-numbers-2.12.0-8756
  • Additional commits viewable in compare view

Updates tqdm from 4.49.0 to 4.66.3

Release notes

Sourced from tqdm's releases.

tqdm v4.66.3 stable

tqdm v4.66.2 stable

  • pandas: add DataFrame.progress_map (#1549)
  • notebook: fix HTML padding (#1506)
  • keras: fix resuming training when verbose>=2 (#1508)
  • fix format_num negative fractions missing leading zero (#1548)
  • fix Python 3.12 DeprecationWarning on import (#1519)
  • linting: use f-strings (#1549)
  • update tests (#1549)
  • CI: bump actions (#1549)

tqdm v4.66.1 stable

  • fix utils.envwrap types (#1493 <- #1491, #1320 <- #966, #1319)
    • e.g. cloudwatch & kubernetes workaround: export TQDM_POSITION=-1
  • drop mentions of unsupported Python versions

tqdm v4.66.0 stable

  • environment variables to override defaults (TQDM_*) (#1491 <- #1061, #950 <- #614, #1318, #619, #612, #370)
    • e.g. in CI jobs, export TQDM_MININTERVAL=5 to avoid log spam
    • add tests & docs for tqdm.utils.envwrap
  • fix & update CLI completion
  • fix & update API docs
  • minor code tidy: replace os.path => pathlib.Path
  • fix docs image hosting
  • release with CI bot account again (cli/cli#6680)

tqdm v4.65.2 stable

  • exclude examples from distributed wheel (#1492)

tqdm v4.65.1 stable

  • migrate setup.{cfg,py} => pyproject.toml (#1490)
    • fix asv benchmarks
    • update docs
  • fix snap build (#1490)
  • fix & update tests (#1490)
    • fix flaky notebook tests
    • bump pre-commit
    • bump workflow actions

tqdm v4.65.0 stable

  • add Python 3.11 and drop Python 3.6 support (#1439, #1419, #502 <- #720, #620)
  • misc code & docs tidy
  • fix & update CI workflows & tests

tqdm v4.64.1 stable

... (truncated)

Commits

Updates requests from 2.22.0 to 2.32.0

Release notes

Sourced from requests's releases.

v2.32.0

2.32.0 (2024-05-20)

🐍 PYCON US 2024 EDITION 🐍

Security

  • Fixed an issue where setting verify=False on the first request from a Session will cause subsequent requests to the same origin to also ignore cert verification, regardless of the value of verify. (GHSA-9wx4-h78v-vm56)

Improvements

  • verify=True now reuses a global SSLContext which should improve request time variance between first and subsequent requests. It should also minimize certificate load time on Windows systems when using a Python version built with OpenSSL 3.x. (#6667)
  • Requests now supports optional use of character detection (chardet or charset_normalizer) when repackaged or vendored. This enables pip and other projects to minimize their vendoring surface area. The Response.text() and apparent_encoding APIs will default to utf-8 if neither library is present. (#6702)

Bugfixes

  • Fixed bug in length detection where emoji length was incorrectly calculated in the request content-length. (#6589)
  • Fixed deserialization bug in JSONDecodeError. (#6629)
  • Fixed bug where an extra leading / (path separator) could lead urllib3 to unnecessarily reparse the request URI. (#6644)

Deprecations

  • Requests has officially added support for CPython 3.12 (#6503)
  • Requests has officially added support for PyPy 3.9 and 3.10 (#6641)
  • Requests has officially dropped support for CPython 3.7 (#6642)
  • Requests has officially dropped support for PyPy 3.7 and 3.8 (#6641)

Documentation

  • Various typo fixes and doc improvements.

Packaging

  • Requests has started adopting some modern packaging practices. The source files for the projects (formerly requests) is now located in src/requests in the Requests sdist. (#6506)
  • Starting in Requests 2.33.0, Requests will migrate to a PEP 517 build system using hatchling. This should not impact the average user, but extremely old versions of packaging utilities may have issues with the new packaging format.

New Contributors

... (truncated)

Changelog

Sourced from requests's changelog.

2.32.0 (2024-05-20)

Security

  • Fixed an issue where setting verify=False on the first request from a Session will cause subsequent requests to the same origin to also ignore cert verification, regardless of the value of verify. (GHSA-9wx4-h78v-vm56)

Improvements

  • verify=True now reuses a global SSLContext which should improve request time variance between first and subsequent requests. It should also minimize certificate load time on Windows systems when using a Python version built with OpenSSL 3.x. (#6667)
  • Requests now supports optional use of character detection (chardet or charset_normalizer) when repackaged or vendored. This enables pip and other projects to minimize their vendoring surface area. The Response.text() and apparent_encoding APIs will default to utf-8 if neither library is present. (#6702)

Bugfixes

  • Fixed bug in length detection where emoji length was incorrectly calculated in the request content-length. (#6589)
  • Fixed deserialization bug in JSONDecodeError. (#6629)
  • Fixed bug where an extra leading / (path separator) could lead urllib3 to unnecessarily reparse the request URI. (#6644)

Deprecations

  • Requests has officially added support for CPython 3.12 (#6503)
  • Requests has officially added support for PyPy 3.9 and 3.10 (#6641)
  • Requests has officially dropped support for CPython 3.7 (#6642)
  • Requests has officially dropped support for PyPy 3.7 and 3.8 (#6641)

Documentation

  • Various typo fixes and doc improvements.

Packaging

  • Requests has started adopting some modern packaging practices. The source files for the projects (formerly requests) is now located in src/requests in the Requests sdist. (#6506)
  • Starting in Requests 2.33.0, Requests will migrate to a PEP 517 build system using hatchling. This should not impact the average user, but extremely old versions of packaging utilities may have issues with the new packaging format.

2.31.0 (2023-05-22)

Security

... (truncated)

Commits
  • d6ebc4a v2.32.0
  • 9a40d12 Avoid reloading root certificates to improve concurrent performance (#6667)
  • 0c030f7 Merge pull request #6702 from nateprewitt/no_char_detection
  • 555b870 Allow character detection dependencies to be optional in post-packaging steps
  • d6dded3 Merge pull request #6700 from franekmagiera/update-redirect-to-invalid-uri-test
  • bf24b7d Use an invalid URI that will not cause httpbin to throw 500
  • 2d5f547 Pin 3.8 and 3.9 runners back to macos-13 (#6688)
  • f1bb07d Merge pull request #6687 from psf/dependabot/github_actions/github/codeql-act...
  • 60047ad Bump github/codeql-action from 3.24.0 to 3.25.0
  • 31ebb81 Merge pull request #6682 from frenzymadness/pytest8
  • Additional commits viewable in compare view

Updates pillow from 6.2.1 to 10.3.0

Release notes

Sourced from pillow's releases.

10.3.0

https://pillow.readthedocs.io/en/stable/releasenotes/10.3.0.html

Changes

... (truncated)

Changelog

Sourced from pillow's changelog.

10.3.0 (2024-04-01)

  • CVE-2024-28219: Use strncpy to avoid buffer overflow #7928 [radarhere, hugovk]

  • Deprecate eval(), replacing it with lambda_eval() and unsafe_eval() #7927 [radarhere, hugovk]

  • Raise ValueError if seeking to greater than offset-sized integer in TIFF #7883 [radarhere]

  • Add --report argument to __main__.py to omit supported formats #7818 [nulano, radarhere, hugovk]

  • Added RGB to I;16, I;16L, I;16B and I;16N conversion #7918, #7920 [radarhere]

  • Fix editable installation with custom build backend and configuration options #7658 [nulano, radarhere]

  • Fix putdata() for I;16N on big-endian #7209 [Yay295, hugovk, radarhere]

  • Determine MPO size from markers, not EXIF data #7884 [radarhere]

  • Improved conversion from RGB to RGBa, LA and La #7888 [radarhere]

  • Support FITS images with GZIP_1 compression #7894 [radarhere]

  • Use I;16 mode for 9-bit JPEG 2000 images #7900 [scaramallion, radarhere]

  • Raise ValueError if kmeans is negative #7891 [radarhere]

  • Remove TIFF tag OSUBFILETYPE when saving using libtiff #7893 [radarhere]

  • Raise ValueError for negative values when loading P1-P3 PPM images #7882 [radarhere]

  • Added reading of JPEG2000 palettes #7870 [radarhere]

  • Added alpha_quality argument when saving WebP images #7872 [radarhere]

... (truncated)

Commits
  • 5c89d88 10.3.0 version bump
  • 63cbfcf Update CHANGES.rst [ci skip]
  • 2776126 Merge pull request #7928 from python-pillow/lcms
  • aeb51cb Merge branch 'main' into lcms
  • 5beb0b6 Update CHANGES.rst [ci skip]
  • cac6ffa Merge pull request #7927 from python-pillow/imagemath
  • f5eeeac Name as 'options' in lambda_eval and unsafe_eval, but '_dict' in deprecated eval
  • facf3af Added release notes
  • 2a93aba Use strncpy to avoid buffer overflow
  • a670597 Update CHANGES.rst [ci skip]
  • Additional commits viewable in compare view

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore <dependency name> major version will close this group update PR and stop Dependabot creating any more for the specific dependency's major version (unless you unignore this specific dependency's major version or upgrade to it yourself)
  • @dependabot ignore <dependency name> minor version will close this group update PR and stop Dependabot creating any more for the specific dependency's minor version (unless you unignore this specific dependency's minor version or upgrade to it yourself)
  • @dependabot ignore <dependency name> will close this group update PR and stop Dependabot creating any more for the specific dependency (unless you unignore this specific dependency or upgrade to it yourself)
  • @dependabot unignore <dependency name> will remove all of the ignore conditions of the specified dependency
  • @dependabot unignore <dependency name> <ignore condition> will remove the ignore condition of the specified dependency and ignore conditions
    You can disable automated security fix PRs for this repo from the Security Alerts page.

updated-dependencies:
- dependency-name: tensorflow-gpu
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: tensorflow-gpu
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: tqdm
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: requests
  dependency-type: direct:production
  dependency-group: pip
- dependency-name: pillow
  dependency-type: direct:production
  dependency-group: pip
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot added the dependencies Pull requests that update a dependency file label May 20, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants