-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
205 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import importlib.util | ||
import importlib | ||
|
||
node_list = [ | ||
"api_node", | ||
] | ||
|
||
NODE_CLASS_MAPPINGS = {} | ||
NODE_DISPLAY_NAME_MAPPINGS = {} | ||
|
||
for module_name in node_list: | ||
imported_module = importlib.import_module(f".nodes.{module_name}", __name__) | ||
|
||
NODE_CLASS_MAPPINGS = {**NODE_CLASS_MAPPINGS, **imported_module.NODE_CLASS_MAPPINGS} | ||
NODE_DISPLAY_NAME_MAPPINGS = {**NODE_DISPLAY_NAME_MAPPINGS, **imported_module.NODE_DISPLAY_NAME_MAPPINGS} | ||
|
||
|
||
__all__ = ["NODE_CLASS_MAPPINGS", "NODE_DISPLAY_NAME_MAPPINGS"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,185 @@ | ||
import requests | ||
from PIL import Image | ||
import io | ||
import numpy as np | ||
|
||
from fal_client import submit | ||
import os | ||
|
||
class FluxPro: | ||
@classmethod | ||
def INPUT_TYPES(cls): | ||
return { | ||
"required": { | ||
"prompt": ("STRING", {"default": "", "multiline": True}), | ||
"image_size": (["square_hd", "square", "portrait_4_3", "portrait_16_9", "landscape_4_3", "landscape_16_9"], {"default": "landscape_4_3"}), | ||
"num_inference_steps": ("INT", {"default": 28, "min": 1, "max": 100}), | ||
"guidance_scale": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 20.0}), | ||
"num_images": ("INT", {"default": 1, "min": 1, "max": 10}), | ||
"safety_tolerance": (["1", "2", "3", "4", "5", "6"], {"default": "2"}), | ||
}, | ||
"optional": { | ||
"seed": ("INT", {"default": -1}), | ||
"api_key": ("STRING", {"default": ""}) | ||
} | ||
} | ||
|
||
RETURN_TYPES = ("IMAGE",) | ||
FUNCTION = "generate_image" | ||
CATEGORY = "FAL" | ||
|
||
def generate_image(self, prompt, image_size, num_inference_steps, guidance_scale, num_images, safety_tolerance, seed=-1, api_key=""): | ||
if api_key: | ||
os.environ['FAL_KEY'] = api_key | ||
|
||
arguments = { | ||
"prompt": prompt, | ||
"image_size": image_size, | ||
"num_inference_steps": num_inference_steps, | ||
"guidance_scale": guidance_scale, | ||
"num_images": num_images, | ||
"safety_tolerance": safety_tolerance | ||
} | ||
if seed != -1: | ||
arguments["seed"] = seed | ||
|
||
try: | ||
handler = submit("fal-ai/flux-pro", arguments=arguments) | ||
result = handler.get() | ||
return self.process_result(result) | ||
except Exception as e: | ||
print(f"Error generating image with FluxPro: {str(e)}") | ||
return self.create_blank_image() | ||
|
||
class FluxDev: | ||
@classmethod | ||
def INPUT_TYPES(cls): | ||
return { | ||
"required": { | ||
"prompt": ("STRING", {"default": "", "multiline": True}), | ||
"image_size": (["square_hd", "square", "portrait_4_3", "portrait_16_9", "landscape_4_3", "landscape_16_9"], {"default": "landscape_4_3"}), | ||
"num_inference_steps": ("INT", {"default": 28, "min": 1, "max": 100}), | ||
"guidance_scale": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 20.0}), | ||
"num_images": ("INT", {"default": 1, "min": 1, "max": 10}), | ||
"enable_safety_checker": ("BOOLEAN", {"default": True}), | ||
}, | ||
"optional": { | ||
"seed": ("INT", {"default": -1}), | ||
"api_key": ("STRING", {"default": ""}) | ||
} | ||
} | ||
|
||
RETURN_TYPES = ("IMAGE",) | ||
FUNCTION = "generate_image" | ||
CATEGORY = "FAL" | ||
|
||
def generate_image(self, prompt, image_size, num_inference_steps, guidance_scale, num_images, enable_safety_checker, seed=-1, api_key=""): | ||
if api_key: | ||
os.environ['FAL_KEY'] = api_key | ||
|
||
arguments = { | ||
"prompt": prompt, | ||
"image_size": image_size, | ||
"num_inference_steps": num_inference_steps, | ||
"guidance_scale": guidance_scale, | ||
"num_images": num_images, | ||
"enable_safety_checker": enable_safety_checker | ||
} | ||
if seed != -1: | ||
arguments["seed"] = seed | ||
|
||
try: | ||
handler = submit("fal-ai/flux/dev", arguments=arguments) | ||
result = handler.get() | ||
return self.process_result(result) | ||
except Exception as e: | ||
print(f"Error generating image with FluxDev: {str(e)}") | ||
return self.create_blank_image() | ||
|
||
class FluxSchnell: | ||
@classmethod | ||
def INPUT_TYPES(cls): | ||
return { | ||
"required": { | ||
"prompt": ("STRING", {"default": "", "multiline": True}), | ||
"image_size": (["square_hd", "square", "portrait_4_3", "portrait_16_9", "landscape_4_3", "landscape_16_9"], {"default": "landscape_4_3"}), | ||
"num_inference_steps": ("INT", {"default": 4, "min": 1, "max": 100}), | ||
"num_images": ("INT", {"default": 1, "min": 1, "max": 10}), | ||
"enable_safety_checker": ("BOOLEAN", {"default": True}), | ||
}, | ||
"optional": { | ||
"seed": ("INT", {"default": -1}), | ||
"api_key": ("STRING", {"default": ""}) | ||
} | ||
} | ||
|
||
RETURN_TYPES = ("IMAGE",) | ||
FUNCTION = "generate_image" | ||
CATEGORY = "FAL" | ||
|
||
def generate_image(self, prompt, image_size, num_inference_steps, num_images, enable_safety_checker, seed=-1, api_key=""): | ||
if api_key: | ||
os.environ['FAL_KEY'] = api_key | ||
|
||
arguments = { | ||
"prompt": prompt, | ||
"image_size": image_size, | ||
"num_inference_steps": num_inference_steps, | ||
"num_images": num_images, | ||
"enable_safety_checker": enable_safety_checker | ||
} | ||
if seed != -1: | ||
arguments["seed"] = seed | ||
|
||
try: | ||
handler = submit("fal-ai/flux/schnell", arguments=arguments) | ||
result = handler.get() | ||
return self.process_result(result) | ||
except Exception as e: | ||
print(f"Error generating image with FluxSchnell: {str(e)}") | ||
return self.create_blank_image() | ||
|
||
# Common methods for all classes | ||
def process_result(self, result): | ||
import torch | ||
images = [] | ||
for img_info in result["images"]: | ||
img_url = img_info["url"] | ||
img_response = requests.get(img_url) | ||
img = Image.open(io.BytesIO(img_response.content)) | ||
img_array = np.array(img).astype(np.float32) / 255.0 | ||
images.append(img_array) | ||
|
||
# Stack the images along a new first dimension | ||
stacked_images = np.stack(images, axis=0) | ||
|
||
# Convert to PyTorch tensor | ||
img_tensor = torch.from_numpy(stacked_images) | ||
|
||
return (img_tensor,) | ||
|
||
def create_blank_image(self): | ||
import torch | ||
blank_img = Image.new('RGB', (512, 512), color='black') | ||
img_array = np.array(blank_img).astype(np.float32) / 255.0 | ||
img_tensor = torch.from_numpy(img_array)[None,] | ||
return (img_tensor,) | ||
|
||
# Add common methods to all classes | ||
for cls in [FluxPro, FluxDev, FluxSchnell]: | ||
cls.process_result = process_result | ||
cls.create_blank_image = create_blank_image | ||
|
||
# Node class mappings | ||
NODE_CLASS_MAPPINGS = { | ||
"FluxPro_fal": FluxPro, | ||
"FluxDev_fal": FluxDev, | ||
"FluxSchnell_fal": FluxSchnell | ||
} | ||
|
||
# Node display name mappings | ||
NODE_DISPLAY_NAME_MAPPINGS = { | ||
"FluxPro_fal": "Flux Pro (fal)", | ||
"FluxDev_fal": "Flux Dev (fal)", | ||
"FluxSchnell_fal": "Flux Schnell (fal)" | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
fal-client | ||
torch |