Skip to content

goaheand/Rethinking-Anomaly-Detection

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Rethinking Graph Neural Networks for Anomaly Detection

This is the official implementation for the following paper:

Rethinking Graph Neural Networks for Anomaly Detection
Jianheng Tang, Jiajin Li, Ziqi Gao, Jia Li; ICML 2022

Dependencies

  • pytorch 1.9.0
  • dgl 0.8.1
  • sympy
  • argparse
  • sklearn

How to run

The T-Finance and T-Social datasets developed in the paper are on google drive. Download and unzip all files in the dataset folder.

plot.zip in the above link is used to reproduce Figure 1 and 2 in our paper. You can unzip it and directly run the corresponding .py files.

The Yelp and Amazon datasets will be automatically downloaded from the Internet.

Train BWGNN (homo) on Amazon (40%):

python main.py --dataset amazon --train_ratio 0.4 --hid_dim 64 \
--order 2 --homo 1 --epoch 100 --run 1

amazon can be replaced by other datasets: yelp/tfinance/tsocial

Train BWGNN (hetero) on Yelp (1%):

python main.py --dataset yelp --train_ratio 0.01 --hid_dim 64 \
--order 2 --homo 0 --epoch 100 --run 1

BWGNN (hetero) only supports Yelp and Amazon.

Train BWGNN (homo) on T-Social (40%):

python main.py --dataset tsocial --train_ratio 0.4 --hid_dim 10 \
--order 5 --homo 1 --epoch 100 --run 1

If you use this package and find it useful, please cite our ICML paper using the following BibTeX. Thanks! :)

@InProceedings{tang2022rethinking,
  title = 	 {Rethinking Graph Neural Networks for Anomaly Detection},
  author =       {Tang, Jianheng and Li, Jiajin and Gao, Ziqi and Li, Jia},
  booktitle = 	 {International Conference on Machine Learning},
  year = 	 {2022},
}

You can find a more detailed BibTex or other citation formats here.

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%