Skip to content

QuBER: High-quality Unknown Object Instance Segmentation via Quadruple Boundary Error Refinement

Notifications You must be signed in to change notification settings

gist-ailab/QuBER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

QuBER

[Paper] [Project Website]

demo

This repository contains the source codes for the paper "High-Quality Unknown Object Instance Segmentation via Quadruple Boundary Error Refinement".

The paper has been authored by Seunghyeok Back, Sangbeom Lee, Kangmin Kim, Joosoon Lee, Sungho Shin, Jaemo Maeng, and Kyoobin Lee.

Accepted at ICRA 2025

TODO

  • Add demo code
  • Add more segmentation and refinment baselines (e.g. UCN, CascadePSP)
  • Training instructions

Install

Tested on Ubuntu, PyTorch 1.10, CUDA 11.3,

conda create -n quber python=3.8
conda activate quber

# for CUDA 11.8, install torch, detectron2
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
python -m pip install 'git+https://github.com/facebookresearch/detectron2.git'

# Install Grounded-SAM 
git clone https://github.com/IDEA-Research/Grounded-Segment-Anything
cd Grounded-Segment-Anything
export AM_I_DOCKER=False
export BUILD_WITH_CUDA=True
export CUDA_HOME=/usr/local/cuda-11.8/
python -m pip install -e segment_anything
pip install --no-build-isolation -e GroundingDINO

# install other dependencies
pip install git+https://github.com/cocodataset/panopticapi.git
pip install -r requirements.txt

Dataset & Checkpoints

Download the following dataset to datasets folder.

Evaluation

python eval/run_eval.py \
    --base-model sam \
    --refiner-model quber \
    --test-dataset OSD \
    --visualize --config configs/quber.yaml

Contact

Should you have any questions or comments about our project, feel free to reach out to us at shback@kimm.re.kr or open an issue in this repository.

About

QuBER: High-quality Unknown Object Instance Segmentation via Quadruple Boundary Error Refinement

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages