Efficient Gillespie algorithms for spreading phenomena in large and heterogeneous higher-order networks
Note
Code implemented using the Fortran Package Manager.
Main paper: Efficient Gillespie algorithms for spreading phenomena in large and heterogeneous higher-order networks, by Hugo P. Maia, Wesley Cota, Yamir Moreno, and Silvio C. Ferreira.
Reference: arxiv:2509.20174 DOI:10.48550/arXiv.2509.20174
This code simulates SIS dynamics on hypergraphs (Hyper-SIS). Each of the
Key points:
- Node recovery rate:
$\alpha = 1$ . - Hyperedge activation threshold:
$\theta(m) = 1 + (m-1)\theta_0$ , where$m$ is the hyperedge order. - Infection rate as a function of hyperedge order:
$\beta(m) = \beta[1 + b(m-1)]$ . - Pairwise infection rate:
$\beta(1) = \beta$ . - Parameters
par_b
andpar_theta
correspond to$b$ and$\theta_0$ .
See the main paper for full details.
Add this package as a dependency using the Fortran Package Manager (fpm):
[dependencies]
hyperSIS.git = "https://github.com/gisc-ufv/hyperSIS"
See the documentation and main program for details.
Tip
💡 A Google Colab notebook demonstrating all installation and usage steps is available here.
The easiest way to use this project is through its Python interface.
Use pip install hyperSIS
to install it.
In this case, you need to clone the repository manually.
Before installing, make sure that at least one Fortran compiler is available. By default, the package assumes GNU Fortran (gfortran
) installed and available in your PATH. See Installing GFortran for help.
Steps:
-
Clone the repository and enter it:
git clone https://github.com/gisc-ufv/hyperSIS.git cd hyperSIS
-
Activate your preferred Python environment (e.g.,
venv
,conda
, etc.):# Example with venv python -m venv venv source venv/bin/activate # Example with conda conda create -n hyperSIS python=3.11 conda activate hyperSIS
-
Install the Python package:
pip install ./python
- If you want to use another compiler and/or Fortran flags, set the
FC
andFFLAGS
.
# Optional: customize the Fortran compiler and flags export FC=gfortran # default is gfortran export FFLAGS="-O3 -march=native -funroll-loops" # adjust optimization flags pip install ./python
- If you want to use another compiler and/or Fortran flags, set the
Tip
💡 See examples.ipynb and Google Colab for examples.
Import the package with
import hyperSIS as hs
The simulation interface revolves around two main objects:
-
SimulationArgs
A dataclass containing all parameters required to configure a hyperSIS simulation, including network specification, algorithm choices, temporal settings, initial conditions, and epidemic parameters. -
run_simulation(beta1: float, args: SimulationArgs)
The function that executes the simulation with the given arguments. Returns aSimulationResult
object containing the processed results, including network mapping, temporal evolution, and statistics of infected nodes.
The SimulationArgs
dataclass contains all configurable parameters for running a hyperSIS simulation.
-
verbose: bool
- Enable verbose output.
- Default:
True
-
verbose_level: str
- Logging level:
'info'
,'warning'
,'error'
,'debug'
. - Default:
warning
- Logging level:
-
seed: int
- Random seed for reproducibility.
- Default:
42
-
remove_files: bool
- Remove temporary files after execution.
- Default:
False
-
network: NetworkFormat
- Network specification as a tuple. Optional parameters are in brackets:
("edgelist", path, [delimiter], [comment], [cache])
("fortran-edgelist", path, [cache])
("bipartite", path, [delimiter], [comment], [cache])
("xgi", name_or_object, [cache])
("xgi_json", path, [cache])
("hif", path, [cache])
("PL", gamma, N, [sample])
("networkx", nx.Graph, [cache])
- Default:
("PL", 3.0, 100, 1)
- Network specification as a tuple. Optional parameters are in brackets:
-
output_dir: Optional[str]
- Directory to store simulation output. If
None
, a temporary folder is used. - Default:
None
- Directory to store simulation output. If
-
algorithm: str
- Simulation algorithm:
'HB_OGA'
or'NB_OGA'
. - Default:
HB_OGA
- Simulation algorithm:
-
sampler: str
- Sampling method:
'rejection_maxheap'
or'btree'
. - Default:
btree
- Sampling method:
-
tmax: int
- Maximum simulation time.
- Default:
100
-
use_qs: bool
- Whether to use the quasi-stationary method.
- Default:
False
-
n_samples: int
- Number of samples per simulation.
- Default:
10
-
time_scale: str
- Temporal scale for output:
'uniform'
or'powerlaw'
. - Default:
uniform
- Temporal scale for output:
-
initial_condition: tuple
- Initial state specification:
-
('fraction', float)
→ fraction of infected nodes -
('number', int)
→ exact number of initially infected nodes
-
- Default:
("fraction", 1.0)
- Initial state specification:
-
export_states: bool
- Whether to export the full state trajectory.
- Default:
False
-
build_xgi_hypergraph: bool
- Whether to build and return the xgi hypergraph representation of the network.
- Default:
False
-
par_b: float
- Epidemic infection rate scale
$b$ in$\beta(m) = \beta[1 + b(m-1)]$ . - Default:
0.5
- Epidemic infection rate scale
-
par_theta: float
- Epidemic critical mass threshold
$\theta_0$ in$\theta(m) = 1 + (m-1)\theta_0$ . - Default:
0.5
- Epidemic critical mass threshold
run_simulation(beta1: float, args: SimulationArgs)
Runs a Hyper-SIS simulation on the specified network.
Parameters:
-
beta1: float
Base infection rate$\beta(1)$ for pairwise interactions. -
args: SimulationArgs
Simulation parameters, including network specification, algorithm choice, number of samples, initial condition, and epidemic parameterspar_b
andpar_theta
.
Returns:
-
SimulationResult
Object containing:network: NetworkFormat
– the network specification used.node_map: dict
– mapping from original node IDs to Fortran node IDs.temporal: TemporalResult
– temporal dynamics with:t: np.ndarray
– mean time per Gillespie tick.rho_avg: np.ndarray
– mean number of infected nodes over all runs.rho_var: np.ndarray
– variance of infected nodes.n_samples: int
– number of runs where infection is non-zero.active_states: Optional[dict]
– detailed active states per sample and time (if requested), formatted as{sample_id: {time: {"nodes": [...], "edges": [...]}}}
.
xgi_hypergraph: Optional[xgi.core.hypergraph.Hypergraph]
– representation of the structure as anxgi
hypergraph, if generated.
Read hyperSIS_sampling.md for instructions.
Important
When using this package, please cite the following paper:
Efficient Gillespie algorithms for spreading phenomena in large and heterogeneous higher-order networks, by Hugo P. Maia, Wesley Cota, Yamir Moreno, and Silvio C. Ferreira (2025)
Reference: arxiv:2509.20174 DOI:10.48550/arXiv.2509.20174
The BibTeX entry is:
@misc{maia2025hoga,
title={Efficient Gillespie algorithms for spreading phenomena in large and heterogeneous higher-order networks},
author={Hugo P. Maia and Wesley Cota and Yamir Moreno and Silvio C. Ferreira},
year={2025},
eprint={2509.20174},
archivePrefix={arXiv},
primaryClass={physics.soc-ph},
url={https://arxiv.org/abs/2509.20174},
}