Skip to content

ggml-backend : fix async copy from CPU #8897

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 15 additions & 10 deletions ggml/src/ggml-backend.c
Original file line number Diff line number Diff line change
Expand Up @@ -351,15 +351,10 @@ void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t b
}

// an async copy would normally happen after all the queued operations on both backends are completed
// sync src, set_async dst
if (ggml_backend_buffer_is_host(src->buffer)) {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
} else {
ggml_backend_synchronize(backend_src);
ggml_backend_tensor_copy(src, dst);
ggml_backend_synchronize(backend_dst);
}
// to simulate the same behavior, we need to synchronize both backends first, and do a blocking copy
ggml_backend_synchronize(backend_src);
ggml_backend_synchronize(backend_dst);
ggml_backend_tensor_copy(src, dst);
}

// events
Expand Down Expand Up @@ -1782,7 +1777,17 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
} else {
ggml_backend_synchronize(split_backend);
}
ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
// try async copy, but if not possible, we can still use a sync copy without synchronizing the dst backend, since we handle the synchronization here with multiple copies and events
// TODO: add public function to facilitate this, since applications do not have direct access to the backend interface
if (!split_backend->iface.cpy_tensor_async || !split_backend->iface.cpy_tensor_async(input_backend, split_backend, input, input_cpy)) {
ggml_backend_synchronize(input_backend);
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this synchronization call can be optimized out since with a null event the backend has already been synchronized. But if there is no measurable performance difference it may be better to just keep it in to make the code easier to understand.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, I left it there for clarity. For backends that don't support events, ggml_backend_synchronize should be a no-op anyway.

}
ggml_backend_tensor_copy(input, input_cpy);
}
}
}

Expand Down
28 changes: 15 additions & 13 deletions ggml/src/ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -2358,33 +2358,35 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend,
}

GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));

ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;

if (!ggml_backend_buffer_is_cuda(src->buffer)) {
if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) {
return false;
}

if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) {
return false;
}

// device -> device
// device -> device copy
ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;

if (backend_src != backend_dst) {
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;

GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) {
#ifndef NDEBUG
GGML_CUDA_LOG_WARN("%s: backend and buffer devices do not match\n", __func__);
#endif
return false;
}

if (backend_src != backend_dst) {
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How is it ensured that there are no race conditions between backend_src and backend_dst for this code branch?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What race conditions are you thinking about? It uses an event to synchronize the two streams.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think I misinterpreted the code. If my understanding is correct the synchronization happens outside this function.

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Part of the synchronization is done in this function, but the most complicated parts happen in ggml_backend_sched. Ultimately, the only responsability of this function is to implement the semantics of the copy_async interface of ggml-backend, as defined in ggml-backend.h:

    // asynchronous copy
    // the copy is performed after all the currently queued operations in backend_src
    // backend_dst will wait for the copy to complete before performing other operations
    // automatic fallback to sync copy if async is not supported
    GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);

// copy on src stream
if (cuda_ctx_src->device == cuda_ctx_dst->device) {
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
} else {
#ifdef GGML_CUDA_NO_PEER_COPY
return false;
Expand All @@ -2393,7 +2395,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_
#endif
}

// record event on src stream
// record event on src stream after the copy
if (!cuda_ctx_src->copy_event) {
ggml_cuda_set_device(cuda_ctx_src->device);
CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
Expand All @@ -2405,7 +2407,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
} else {
// src and dst are on the same backend
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
}
return true;
}
Expand Down
Loading