-
Couldn't load subscription status.
- Fork 13.4k
CUDA: Faster Mixtral prompt processing #4538
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -7830,6 +7830,11 @@ static void ggml_cuda_set_peer_access(const int n_tokens) { | |
| } | ||
|
|
||
| #ifdef NDEBUG | ||
| for (int id = 0; id < g_device_count; ++id) { | ||
| CUDA_CHECK(ggml_cuda_set_device(id)); | ||
| CUDA_CHECK(cudaDeviceSynchronize()); | ||
| } | ||
|
|
||
| for (int id = 0; id < g_device_count; ++id) { | ||
| CUDA_CHECK(ggml_cuda_set_device(id)); | ||
|
|
||
|
|
@@ -7881,8 +7886,6 @@ static void ggml_cuda_op_mul_mat( | |
| const int nb2 = dst->nb[2]; | ||
| const int nb3 = dst->nb[3]; | ||
|
|
||
| ggml_cuda_set_peer_access(ne11); | ||
|
|
||
| GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT); | ||
| GGML_ASSERT(src1->backend != GGML_BACKEND_GPU_SPLIT); | ||
|
|
||
|
|
@@ -8781,16 +8784,21 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s | |
|
|
||
| GGML_ASSERT(dst->backend == GGML_BACKEND_GPU); | ||
|
|
||
| const int64_t nb11 = src1->nb[1]; | ||
| const int64_t nb1 = dst->nb[1]; | ||
|
|
||
| const struct ggml_tensor * ids = src0; | ||
| const int32_t id = ((int32_t *) dst->op_params)[0]; | ||
| const int32_t n_as = ((int32_t *) dst->op_params)[1]; | ||
|
|
||
| std::vector<char> ids_host(ggml_nbytes(ids)); | ||
|
|
||
| const cudaStream_t stream = g_cudaStreams[g_main_device][0]; | ||
|
|
||
| if (ids->backend == GGML_BACKEND_GPU) { | ||
| const char * ids_dev = (const char *)((const ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device]; | ||
| CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0])); | ||
| CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0])); | ||
| CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); | ||
| CUDA_CHECK(cudaStreamSynchronize(stream)); | ||
| } else { | ||
| memcpy(ids_host.data(), ids->data, ggml_nbytes(ids)); | ||
| } | ||
|
|
@@ -8804,37 +8812,93 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s | |
| ggml_tensor src1_row = *src1; | ||
| ggml_tensor dst_row = *dst; | ||
|
|
||
| src1_row.ne[1] = 1; | ||
| dst_row.ne[1] = 1; | ||
| src1_row.extra = &src1_row_extra; | ||
| dst_row.extra = &dst_row_extra; | ||
|
|
||
| src1_row.nb[2] = src1_row.nb[1]; | ||
| dst_row.nb[2] = dst_row.nb[1]; | ||
| char * src1_original = (char *) src1_extra->data_device[g_main_device]; | ||
| char * dst_original = (char *) dst_extra->data_device[g_main_device]; | ||
|
|
||
| src1_row.nb[3] = src1_row.nb[1]; | ||
| dst_row.nb[3] = dst_row.nb[1]; | ||
| if (src1->ne[1] == 1) { | ||
| for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { | ||
| //int32_t row_id; | ||
| //CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0])); | ||
| //CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0])); | ||
|
|
||
| src1_row.extra = &src1_row_extra; | ||
| dst_row.extra = &dst_row_extra; | ||
| const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); | ||
|
|
||
| GGML_ASSERT(row_id >= 0 && row_id < n_as); | ||
|
|
||
| for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { | ||
| //int32_t row_id; | ||
| //CUDA_CHECK(cudaMemcpyAsync(&row_id, ids_dev + i01*ids->nb[1] + id*ids->nb[0], sizeof(int32_t), cudaMemcpyDeviceToHost, g_cudaStreams[g_main_device][0])); | ||
| //CUDA_CHECK(cudaStreamSynchronize(g_cudaStreams[g_main_device][0])); | ||
| const struct ggml_tensor * src0_row = dst->src[row_id + 2]; | ||
|
|
||
| const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); | ||
| src1_row_extra.data_device[g_main_device] = src1_original + i01*src1->nb[1]; | ||
| src1_row.data = (char *) src1->data + i01*src1->nb[1]; // TODO why is this set? | ||
|
|
||
| GGML_ASSERT(row_id >= 0 && row_id < n_as); | ||
| dst_row_extra.data_device[g_main_device] = dst_original + i01*dst->nb[1]; | ||
| dst_row.data = (char *) dst->data + i01*dst->nb[1]; // TODO why is this set? | ||
|
Comment on lines
+8833
to
+8837
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It is set for consistency and in case that |
||
|
|
||
| const struct ggml_tensor * src0_row = dst->src[row_id + 2]; | ||
| ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row); | ||
| } | ||
| } else { | ||
| size_t as_src1, as_dst; | ||
| char * src1_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(src1), &as_src1); | ||
| char * dst_contiguous = (char *) ggml_cuda_pool_malloc(sizeof(float)*ggml_nelements(dst), &as_dst); | ||
|
|
||
| src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1]; | ||
| src1_row.data = (char *) src1->data + i01*src1->nb[1]; | ||
| src1_row_extra.data_device[g_main_device] = src1_contiguous; | ||
| dst_row_extra.data_device[g_main_device] = dst_contiguous; | ||
|
|
||
| for (int32_t row_id = 0; row_id < n_as; ++row_id) { | ||
| const struct ggml_tensor * src0_row = dst->src[row_id + 2]; | ||
|
|
||
| int64_t num_src1_rows = 0; | ||
| for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { | ||
| const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); | ||
|
|
||
| if (row_id_i != row_id) { | ||
| continue; | ||
| } | ||
|
|
||
| dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1]; | ||
| dst_row.data = (char *) dst->data + i01*dst->nb[1]; | ||
| GGML_ASSERT(row_id >= 0 && row_id < n_as); | ||
|
|
||
| ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row); | ||
| CUDA_CHECK(cudaMemcpyAsync(src1_contiguous + num_src1_rows*nb11, src1_original + i01*nb11, | ||
| nb11, cudaMemcpyDeviceToDevice, stream)); | ||
| num_src1_rows++; | ||
| } | ||
|
|
||
| if (num_src1_rows == 0) { | ||
| continue; | ||
| } | ||
|
|
||
| src1_row.ne[1] = num_src1_rows; | ||
| dst_row.ne[1] = num_src1_rows; | ||
|
|
||
| src1_row.nb[1] = nb11; | ||
| src1_row.nb[2] = num_src1_rows*nb11; | ||
| src1_row.nb[3] = num_src1_rows*nb11; | ||
|
|
||
| dst_row.nb[1] = nb1; | ||
| dst_row.nb[2] = num_src1_rows*nb1; | ||
| dst_row.nb[3] = num_src1_rows*nb1; | ||
|
|
||
| ggml_cuda_mul_mat(src0_row, &src1_row, &dst_row); | ||
|
|
||
| num_src1_rows = 0; | ||
| for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) { | ||
| const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]); | ||
|
|
||
| if (row_id_i != row_id) { | ||
| continue; | ||
| } | ||
|
|
||
| GGML_ASSERT(row_id >= 0 && row_id < n_as); | ||
|
|
||
| CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous + num_src1_rows*nb1, | ||
| nb1, cudaMemcpyDeviceToDevice, stream)); | ||
| num_src1_rows++; | ||
| } | ||
| } | ||
|
|
||
| ggml_cuda_pool_free(src1_contiguous, as_src1); | ||
| ggml_cuda_pool_free(dst_contiguous, as_dst); | ||
| } | ||
| } | ||
|
|
||
|
|
@@ -9370,6 +9434,10 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ | |
| return false; | ||
| } | ||
|
|
||
| if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT) { | ||
| ggml_cuda_set_peer_access(tensor->src[1]->ne[1]); | ||
| } | ||
|
|
||
| if (params->ith != 0) { | ||
| return true; | ||
| } | ||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.