-
Notifications
You must be signed in to change notification settings - Fork 12.1k
Feature: support baichuan serial models, by now, including Baichuan-7… #3009
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
bd72ba0
d1940a3
2cc8dce
37873ae
9fd5aa7
c8863f3
39c4b85
306d71b
fa41aeb
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
#!/usr/bin/env python3 | ||
# HF baichuan --> gguf conversion | ||
|
||
from __future__ import annotations | ||
|
||
import argparse | ||
import json | ||
import os | ||
import struct | ||
import sys | ||
from pathlib import Path | ||
from typing import TYPE_CHECKING, Any | ||
import itertools | ||
import gguf | ||
import numpy as np | ||
import torch | ||
from sentencepiece import SentencePieceProcessor # type: ignore[import] | ||
|
||
|
||
if TYPE_CHECKING: | ||
from typing import TypeAlias | ||
|
||
NDArray: TypeAlias = 'np.ndarray[Any, Any]' | ||
|
||
# reverse HF permute back to original pth layout | ||
|
||
|
||
def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: int | None = None) -> NDArray: | ||
if n_kv_head is not None and n_head != n_kv_head: | ||
n_head //= n_kv_head | ||
|
||
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | ||
.swapaxes(1, 2) | ||
.reshape(weights.shape)) | ||
|
||
def reverse_hf_permute_part(weights: NDArray, n_part: int, n_head: int, n_head_kv: int| None = None) -> NDArray: | ||
r = weights.shape[0] // 3 | ||
return (reverse_hf_permute(weights[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) | ||
|
||
def reverse_hf_part(weights: NDArray, n_part: int) -> NDArray: | ||
r = weights.shape[0] // 3 | ||
return weights[r * n_part : r * n_part + r, ...] | ||
|
||
def count_model_parts(dir_model: str) -> int: | ||
num_parts = 0 | ||
|
||
for filename in os.listdir(dir_model): | ||
if filename.startswith("pytorch_model-"): | ||
num_parts += 1 | ||
|
||
if num_parts > 0: | ||
print("gguf: found " + str(num_parts) + " model parts") | ||
|
||
return num_parts | ||
|
||
|
||
|
||
def parse_args() -> argparse.Namespace: | ||
parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file") | ||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") | ||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | ||
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)") | ||
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The default for 'ftype' does not work unless you also use There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. You are right, I have noticed this problem, We hope keep the consistency with other model converion script by now.Maybe we will fix it in the future. |
||
return parser.parse_args() | ||
|
||
args = parse_args() | ||
|
||
dir_model = args.model | ||
ftype = args.ftype | ||
if not dir_model.is_dir(): | ||
print(f'Error: {args.model} is not a directory', file = sys.stderr) | ||
sys.exit(1) | ||
|
||
# possible tensor data types | ||
# ftype == 0 -> float32 | ||
# ftype == 1 -> float16 | ||
|
||
# map from ftype to string | ||
ftype_str = ["f32", "f16"] | ||
|
||
if args.outfile is not None: | ||
fname_out = args.outfile | ||
else: | ||
# output in the same directory as the model by default | ||
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf' | ||
|
||
print("gguf: loading model "+dir_model.name) | ||
|
||
with open(dir_model / "config.json", "r", encoding="utf-8") as f: | ||
hparams = json.load(f) | ||
print("hello print: ",hparams["architectures"][0]) | ||
if hparams["architectures"][0] != "BaichuanForCausalLM": | ||
print("Model architecture not supported: " + hparams["architectures"][0]) | ||
|
||
sys.exit() | ||
|
||
# get number of model parts | ||
num_parts = count_model_parts(dir_model) | ||
print(f"num_parts:{num_parts}\n") | ||
ARCH=gguf.MODEL_ARCH.BAICHUAN | ||
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH]) | ||
|
||
print("gguf: get model metadata") | ||
|
||
block_count = hparams["num_hidden_layers"] | ||
head_count = hparams["num_attention_heads"] | ||
|
||
if "num_key_value_heads" in hparams: | ||
head_count_kv = hparams["num_key_value_heads"] | ||
else: | ||
head_count_kv = head_count | ||
|
||
if "_name_or_path" in hparams: | ||
hf_repo = hparams["_name_or_path"] | ||
else: | ||
hf_repo = "" | ||
|
||
if "max_sequence_length" in hparams: | ||
ctx_length = hparams["max_sequence_length"] | ||
elif "max_position_embeddings" in hparams: | ||
ctx_length = hparams["max_position_embeddings"] | ||
elif "model_max_length" in hparams: | ||
ctx_length = hparams["model_max_length"] | ||
else: | ||
print("gguf: can not find ctx length parameter.") | ||
|
||
sys.exit() | ||
|
||
|
||
gguf_writer.add_name(dir_model.name) | ||
gguf_writer.add_source_hf_repo(hf_repo) | ||
gguf_writer.add_tensor_data_layout("Meta AI original pth") | ||
gguf_writer.add_context_length(ctx_length) | ||
gguf_writer.add_embedding_length(hparams["hidden_size"]) | ||
gguf_writer.add_block_count(block_count) | ||
gguf_writer.add_feed_forward_length(hparams["intermediate_size"]) | ||
gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) | ||
gguf_writer.add_head_count(head_count) | ||
gguf_writer.add_head_count_kv(head_count_kv) | ||
gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"]) | ||
|
||
if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]: | ||
if "type" in hparams["rope_scaling"]: | ||
if hparams["rope_scaling"]["type"] == "linear": | ||
gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"]) | ||
|
||
|
||
# TOKENIZATION | ||
|
||
print("gguf: get tokenizer metadata") | ||
|
||
tokens: list[bytes] = [] | ||
scores: list[float] = [] | ||
toktypes: list[int] = [] | ||
|
||
tokenizer_model_file = dir_model / 'tokenizer.model' | ||
if not tokenizer_model_file.is_file(): | ||
print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr) | ||
sys.exit(1) | ||
|
||
# vocab type sentencepiece | ||
print("gguf: get sentencepiece tokenizer vocab, scores and token types") | ||
|
||
tokenizer = SentencePieceProcessor(str(tokenizer_model_file)) | ||
|
||
for i in range(tokenizer.vocab_size()): | ||
text: bytes | ||
score: float | ||
|
||
piece = tokenizer.id_to_piece(i) | ||
text = piece.encode("utf-8") | ||
score = tokenizer.get_score(i) | ||
|
||
toktype = 1 # defualt to normal token type | ||
if tokenizer.is_unknown(i): | ||
toktype = 2 | ||
if tokenizer.is_control(i): | ||
toktype = 3 | ||
|
||
# toktype = 4 is user-defined = tokens from added_tokens.json | ||
|
||
if tokenizer.is_unused(i): | ||
toktype = 5 | ||
if tokenizer.is_byte(i): | ||
toktype = 6 | ||
|
||
tokens.append(text) | ||
scores.append(score) | ||
toktypes.append(toktype) | ||
|
||
added_tokens_file = dir_model / 'added_tokens.json' | ||
if added_tokens_file.is_file(): | ||
with open(added_tokens_file, "r", encoding="utf-8") as f: | ||
addtokens_json = json.load(f) | ||
|
||
print("gguf: get added tokens") | ||
|
||
for key in addtokens_json: | ||
tokens.append( key.encode("utf-8") ) | ||
scores.append(-1000.0) | ||
toktypes.append(4) # user-defined token type | ||
|
||
|
||
gguf_writer.add_tokenizer_model("llama") | ||
gguf_writer.add_token_list(tokens) | ||
gguf_writer.add_token_scores(scores) | ||
gguf_writer.add_token_types(toktypes) | ||
|
||
special_vocab = gguf.SpecialVocab(dir_model) | ||
special_vocab.add_to_gguf(gguf_writer) | ||
|
||
# TENSORS | ||
|
||
tensor_map = gguf.get_tensor_name_map(ARCH,block_count) | ||
|
||
# tensor info | ||
print("gguf: get tensor metadata") | ||
|
||
if num_parts == 0: | ||
part_names = iter(("pytorch_model.bin",)) | ||
else: | ||
part_names = ( | ||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1) | ||
) | ||
|
||
|
||
for part_name in part_names: | ||
if args.vocab_only: | ||
break | ||
print("gguf: loading model part '" + part_name + "'") | ||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu") | ||
|
||
tmp=model_part | ||
for i in range(block_count): | ||
if f"model.layers.{i}.self_attn.W_pack.weight" in model_part: | ||
print(f"Unpacking and permuting layer {i}") | ||
tmp[f"model.layers.{i}.self_attn.q_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],0,head_count,head_count) | ||
tmp[f"model.layers.{i}.self_attn.k_proj.weight"]=reverse_hf_permute_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],1,head_count,head_count_kv) | ||
tmp[f"model.layers.{i}.self_attn.v_proj.weight"]=reverse_hf_part(model_part[f"model.layers.{i}.self_attn.W_pack.weight"],2) | ||
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] | ||
cebtenzzre marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
||
for name in model_part.keys(): | ||
data = model_part[name] | ||
# we don't need these | ||
if name.endswith(".rotary_emb.inv_freq"): | ||
continue | ||
|
||
old_dtype = data.dtype | ||
|
||
# convert any unsupported data types to float32 | ||
if data.dtype != torch.float16 and data.dtype != torch.float32: | ||
data = data.to(torch.float32) | ||
|
||
data = data.squeeze().numpy() | ||
|
||
# map tensor names | ||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias")) | ||
if new_name is None: | ||
print("Can not map tensor '" + name + "'") | ||
sys.exit() | ||
|
||
n_dims = len(data.shape) | ||
data_dtype = data.dtype | ||
|
||
# if f32 desired, convert any float16 to float32 | ||
if ftype == 0 and data_dtype == np.float16: | ||
data = data.astype(np.float32) | ||
|
||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 | ||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1: | ||
data = data.astype(np.float32) | ||
|
||
# if f16 desired, convert any float32 2-dim weight tensors to float16 | ||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: | ||
data = data.astype(np.float16) | ||
|
||
print(name + " -> " + new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype)) | ||
gguf_writer.add_tensor(new_name, data) | ||
|
||
|
||
print("gguf: write header") | ||
gguf_writer.write_header_to_file() | ||
print("gguf: write metadata") | ||
gguf_writer.write_kv_data_to_file() | ||
if not args.vocab_only: | ||
print("gguf: write tensors") | ||
gguf_writer.write_tensors_to_file() | ||
|
||
gguf_writer.close() | ||
|
||
print(f"gguf: model successfully exported to '{fname_out}'") | ||
print("") |
Uh oh!
There was an error while loading. Please reload this page.