Skip to content

CANN: Implement GLU ops #14884

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 26, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion ggml/src/ggml-cann/acl_tensor.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -77,14 +77,16 @@ aclTensor* ggml_cann_create_tensor(const ggml_tensor* tensor, int64_t* ne,
for (int i = 0; i < final_dims; i++) {
acl_storage_len += (acl_ne[i] - 1) * acl_stride[i];
}
size_t elem_offset = offset / ggml_element_size(tensor);
acl_storage_len += elem_offset;

// Reverse ne and stride.
std::reverse(acl_ne, acl_ne + final_dims);
std::reverse(acl_stride, acl_stride + final_dims);

aclTensor* acl_tensor = aclCreateTensor(
acl_ne, final_dims, ggml_cann_type_mapping(tensor->type), acl_stride,
offset / ggml_element_size(tensor), format, &acl_storage_len, 1,
elem_offset, format, &acl_storage_len, 1,
tensor->data);

return acl_tensor;
Expand Down
38 changes: 37 additions & 1 deletion ggml/src/ggml-cann/aclnn_ops.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclT
}
}

void ggml_cann_unary_op(
void ggml_cann_op_unary(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
Expand All @@ -111,6 +111,42 @@ void ggml_cann_unary_op(
ggml_cann_release_resources(ctx, acl_src, acl_dst);
}

void ggml_cann_op_unary_gated(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];

GGML_ASSERT(ggml_is_contiguous_1(src0));
GGML_ASSERT(ggml_is_contiguous_1(dst));
const int32_t swapped = ggml_get_op_params_i32(dst, 1);

aclTensor* acl_dst = ggml_cann_create_tensor(dst);
aclTensor *acl_src0 = nullptr, *acl_src1 = nullptr;
if(src1) {
GGML_ASSERT(ggml_is_contiguous_1(src1));
GGML_ASSERT(src0->type == src1->type);

acl_src0 = ggml_cann_create_tensor(src0);
acl_src1 = ggml_cann_create_tensor(src1);
} else {
int64_t ne[] = {src0->ne[0] / 2, src0->ne[1], src0->ne[2], src0->ne[3]};
size_t nb[] = {src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]};
acl_src0 = ggml_cann_create_tensor(src0, ne, nb, GGML_MAX_DIMS, ACL_FORMAT_ND, 0);
acl_src1 = ggml_cann_create_tensor(src0, ne, nb, GGML_MAX_DIMS, ACL_FORMAT_ND, ne[0] * ggml_element_size(src0));
if (swapped) {
std::swap(acl_src0, acl_src1);
}
}

unary_op(ctx, acl_src0, acl_dst);
GGML_CANN_CALL_ACLNN_OP(ctx, InplaceMul, acl_dst, acl_src1);

ggml_cann_release_resources(ctx, acl_src0, acl_dst);
if(src1)
ggml_cann_release_resources(ctx, acl_src1);
}

/**
* @brief Repeats elements of a tensor along each dimension according to the
* specified repeat array.
Expand Down
120 changes: 98 additions & 22 deletions ggml/src/ggml-cann/aclnn_ops.h
Original file line number Diff line number Diff line change
Expand Up @@ -1098,7 +1098,7 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
*/
template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
void ggml_cann_unary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
void ggml_cann_op_unary(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];

aclTensor* acl_src = ggml_cann_create_tensor(src);
Expand All @@ -1109,49 +1109,125 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
}

/**
* @brief Applies a unary operation to a ggml tensor using the CANN backend.
* @brief Applies a unary operation to a ggml tensor using the CANN backend.
*
* @details This function performs a unary operation on the input tensor using
* a user-provided lambda or callable object `unary_op`, which accepts the CANN
* context and two ACL tensors (source and destination). Internally, this function
* creates ACL representations of the ggml tensors and invokes the unary operation.
* The result is stored in the destination tensor `dst`. This utility abstracts the
* common boilerplate of tensor conversion and cleanup when implementing unary ops.
* @details This function applies a unary operation to the input tensor using
* a user-provided lambda or callable `unary_op`. The lambda receives the
* CANN backend context and two ACL tensors: the source and the destination.
*
* @param unary_op A callable that performs the unary operation using CANN APIs.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* The source tensor is retrieved from `dst->src[0]`.
* Internally, this function handles the conversion from GGML tensors to ACL tensors,
* calls the provided unary op, and manages resource cleanup. The input is assumed
* to be `dst->src[0]`, and the result is written to `dst`.
*
* This utility simplifies writing unary op wrappers by abstracting tensor preparation.
*
* @param unary_op A callable that performs the unary operation using CANN ACL APIs.
* @param ctx The CANN context for operation execution.
* @param dst The destination ggml_tensor where the result will be stored.
* The input tensor is assumed to be `dst->src[0]`.
*
* @see GGML_CANN_CALL_OP_UNARY
*/
void ggml_cann_unary_op(
void ggml_cann_op_unary(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst);

/**
* @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op.
* @brief Applies a gated (GLU-style) unary operation using the CANN backend.
*
* @details This function performs a gated activation such as GEGLU or ReGLU.
* It supports two input modes:
*
* 1. **Dual input mode**: `dst->src[0]` and `dst->src[1]` are both valid tensors.
* These are used directly as the value and gate tensors.
*
* 2. **Packed input mode**: Only `dst->src[0]` is valid, and it is assumed to
* contain a concatenation of value and gate along the first dimension. This tensor
* will be split into two equal halves to form the value and gate inputs.
*
* The function applies a user-provided unary operation (e.g., GELU) to the value tensor,
* then multiplies the result in-place with the gate tensor:
*
* @code
* dst = unary_op(value) * gate;
* @endcode
*
* The `swapped` parameter (from `dst->op_params[1]`) allows flipping the
* order of value/gate in the packed input case.
*
* @param unary_op A callable that performs the unary operation using CANN ACL APIs.
* It receives (ctx, acl_value_tensor, acl_output_tensor).
* @param ctx The CANN context used for execution.
* @param dst The destination ggml_tensor. Source tensors are in `dst->src[0]` and optionally `src[1]`.
*
* @see GGML_CANN_CALL_OP_UNARY_GATED
*/
void ggml_cann_op_unary_gated(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst);

/**
* @brief Helper macro to call a unary ACL operator via ggml_cann_op_unary.
*
* This macro wraps the specified ACLNN unary operator name into a lambda expression,
* and passes it to `ggml_cann_op_unary`, which handles the common logic for executing
* unary ops in the CANN backend.
*
* Internally, this macro expands to a lambda like:
* @code
* [](ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) {
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
* };
* @endcode
*
* This lambda is then passed to `ggml_cann_op_unary`, which applies the operation.
*
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
*
* @see ggml_cann_op_unary
* @see GGML_CANN_CALL_ACLNN_OP
*/
#define GGML_CANN_CALL_OP_UNARY(OP_NAME) \
do { \
auto lambda = [](ggml_backend_cann_context& ctx, \
aclTensor* acl_src, \
aclTensor* acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_op_unary(lambda, ctx, dst); \
} \
while (0)

/**
* @brief Helper macro to call a gated unary ACL operator via ggml_cann_op_unary_gated.
*
* This macro defines an inline lambda wrapping a specific ACL operation name,
* and passes it to the templated ggml_cann_unary_op function. It simplifies
* calling unary ops by hiding the lambda boilerplate.
* This macro wraps the specified ACLNN unary operator name into a lambda expression,
* and passes it to `ggml_cann_op_unary_gated`, which handles the common logic for
* executing gated unary ops in the CANN backend.
*
* Internally, the lambda will call:
* Internally, this macro expands to a lambda like:
* @code
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
* [](ggml_backend_cann_context& ctx, aclTensor* acl_src, aclTensor* acl_dst) {
* GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst);
* };
* @endcode
*
* This lambda is then passed to `ggml_cann_op_unary_gated`, which applies the operation.
*
* @param OP_NAME The name of the ACL unary operator to invoke via GGML_CANN_CALL_ACLNN_OP.
*
* @see ggml_cann_unary_op
* @see ggml_cann_op_unary_gated
* @see GGML_CANN_CALL_ACLNN_OP
*/
#define GGML_CANN_CALL_UNARY_OP(OP_NAME) \
#define GGML_CANN_CALL_OP_UNARY_GATED(OP_NAME) \
do { \
auto lambda = [](ggml_backend_cann_context& ctx, \
aclTensor* acl_src, \
aclTensor* acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(ctx, OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_unary_op(lambda, ctx, dst); \
ggml_cann_op_unary_gated(lambda, ctx, dst); \
} \
while (0)

#endif // CANN_ACLNN_OPS
72 changes: 56 additions & 16 deletions ggml/src/ggml-cann/ggml-cann.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1681,48 +1681,50 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_ABS:
GGML_CANN_CALL_UNARY_OP(Abs);
GGML_CANN_CALL_OP_UNARY(Abs);
break;
case GGML_UNARY_OP_NEG:
GGML_CANN_CALL_UNARY_OP(Neg);
GGML_CANN_CALL_OP_UNARY(Neg);
break;
case GGML_UNARY_OP_GELU:
GGML_CANN_CALL_UNARY_OP(Gelu);
case GGML_UNARY_OP_GELU_ERF:
// aclnnGelu internally uses the erf-based approximation.
GGML_CANN_CALL_OP_UNARY(Gelu);
break;
case GGML_UNARY_OP_SILU:
GGML_CANN_CALL_UNARY_OP(Silu);
GGML_CANN_CALL_OP_UNARY(Silu);
break;
case GGML_UNARY_OP_GELU_QUICK: {
auto lambda = [](ggml_backend_cann_context& ctx,
aclTensor* acl_src,
aclTensor* acl_dst) {
GGML_CANN_CALL_ACLNN_OP(ctx, GeluV2, acl_src, 0, acl_dst);
};
ggml_cann_unary_op(lambda, ctx, dst);
ggml_cann_op_unary(lambda, ctx, dst);
} break;
case GGML_UNARY_OP_TANH:
GGML_CANN_CALL_UNARY_OP(Tanh);
GGML_CANN_CALL_OP_UNARY(Tanh);
break;
case GGML_UNARY_OP_RELU:
GGML_CANN_CALL_UNARY_OP(Relu);
GGML_CANN_CALL_OP_UNARY(Relu);
break;
case GGML_UNARY_OP_SIGMOID:
GGML_CANN_CALL_UNARY_OP(Sigmoid);
GGML_CANN_CALL_OP_UNARY(Sigmoid);
break;
case GGML_UNARY_OP_HARDSIGMOID:
GGML_CANN_CALL_UNARY_OP(Hardsigmoid);
GGML_CANN_CALL_OP_UNARY(Hardsigmoid);
break;
case GGML_UNARY_OP_HARDSWISH:
GGML_CANN_CALL_UNARY_OP(Hardswish);
GGML_CANN_CALL_OP_UNARY(Hardswish);
break;
case GGML_UNARY_OP_EXP:
GGML_CANN_CALL_UNARY_OP(Exp);
GGML_CANN_CALL_OP_UNARY(Exp);
break;
case GGML_UNARY_OP_ELU:
ggml_cann_elu(ctx, dst);
break;
case GGML_UNARY_OP_SGN:
GGML_CANN_CALL_UNARY_OP(Sign);
GGML_CANN_CALL_OP_UNARY(Sign);
break;
case GGML_UNARY_OP_STEP:
ggml_cann_step(ctx, dst);
Expand All @@ -1731,6 +1733,31 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
return false;
}
break;
case GGML_OP_GLU:
switch (ggml_get_glu_op(dst)) {
case GGML_GLU_OP_REGLU:
GGML_CANN_CALL_OP_UNARY_GATED(Relu);
break;
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_GEGLU_ERF:
// aclnnGelu internally uses the erf-based approximation.
GGML_CANN_CALL_OP_UNARY_GATED(Gelu);
break;
case GGML_GLU_OP_SWIGLU:
GGML_CANN_CALL_OP_UNARY_GATED(Silu);
break;
case GGML_GLU_OP_GEGLU_QUICK: {
auto lambda = [](ggml_backend_cann_context& ctx,
aclTensor* acl_src,
aclTensor* acl_dst) {
GGML_CANN_CALL_ACLNN_OP(ctx, GeluV2, acl_src, 0, acl_dst);
};
ggml_cann_op_unary_gated(lambda, ctx, dst);
} break;
default:
return false;
}
break;
case GGML_OP_NORM:
ggml_cann_norm(ctx, dst);
break;
Expand Down Expand Up @@ -1773,7 +1800,7 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
ggml_cann_binary_op<aclnn_mul>(ctx, dst);
break;
case GGML_OP_SQRT:
GGML_CANN_CALL_UNARY_OP(Sqrt);
GGML_CANN_CALL_OP_UNARY(Sqrt);
break;
case GGML_OP_CLAMP:
ggml_cann_clamp(ctx, dst);
Expand Down Expand Up @@ -1818,16 +1845,16 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
ggml_cann_argmax(ctx, dst);
break;
case GGML_OP_COS:
ggml_cann_unary_op<aclnn_cos>(ctx, dst);
ggml_cann_op_unary<aclnn_cos>(ctx, dst);
break;
case GGML_OP_SIN:
ggml_cann_unary_op<aclnn_sin>(ctx, dst);
ggml_cann_op_unary<aclnn_sin>(ctx, dst);
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cann_conv_transpose_1d(ctx, dst);
break;
case GGML_OP_LOG:
GGML_CANN_CALL_UNARY_OP(Log);
GGML_CANN_CALL_OP_UNARY(Log);
break;
case GGML_OP_MEAN:
ggml_cann_mean(ctx, dst);
Expand Down Expand Up @@ -2101,10 +2128,23 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_GELU_ERF:
return true;
default:
return false;
}
case GGML_OP_GLU:
switch (ggml_get_glu_op(op)) {
case GGML_GLU_OP_REGLU:
case GGML_GLU_OP_GEGLU:
case GGML_GLU_OP_SWIGLU:
case GGML_GLU_OP_GEGLU_ERF:
case GGML_GLU_OP_GEGLU_QUICK:
return true;
default:
return false;
}
break;
case GGML_OP_MUL_MAT: {
switch (op->src[0]->type) {
case GGML_TYPE_F16:
Expand Down
Loading