Skip to content

Add support for Arcee AI's upcoming AFM model #14185

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jun 15, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions convert_hf_to_gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -2020,6 +2020,20 @@ def prepare_tensors(self):
raise ValueError(f"Unprocessed experts: {experts}")


@ModelBase.register("ArceeForCausalLM")
class ArceeModel(LlamaModel):
model_arch = gguf.MODEL_ARCH.ARCEE

def set_gguf_parameters(self):
super().set_gguf_parameters()
self._try_set_pooling_type()
rope_scaling = self.hparams.get("rope_scaling") or {}
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])


@ModelBase.register(
"LlavaForConditionalGeneration", # pixtral
"Mistral3ForConditionalGeneration", # mistral small 3.1
Expand Down
1 change: 1 addition & 0 deletions convert_hf_to_gguf_update.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,6 +128,7 @@ class TOKENIZER_TYPE(IntEnum):
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
{"name": "pixtral", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mistral-community/pixtral-12b", },
{"name": "seed-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base", },
{"name": "arcee", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/arcee-ai/AFM-4.5B", }, # TODO confirm final URL
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Either this shouldn't have been added, or you forgot to add the new hash.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

addressed in #14207

]

# some models are known to be broken upstream, so we will skip them as exceptions
Expand Down
19 changes: 18 additions & 1 deletion gguf-py/gguf/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -344,6 +344,7 @@ class MODEL_ARCH(IntEnum):
PLM = auto()
BAILINGMOE = auto()
DOTS1 = auto()
ARCEE = auto()


class VISION_PROJECTOR_TYPE(IntEnum):
Expand Down Expand Up @@ -624,7 +625,8 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.WAVTOKENIZER_DEC: "wavtokenizer-dec",
MODEL_ARCH.PLM: "plm",
MODEL_ARCH.BAILINGMOE: "bailingmoe",
MODEL_ARCH.DOTS1: "dots1"
MODEL_ARCH.DOTS1: "dots1",
MODEL_ARCH.ARCEE: "arcee",
}

VISION_PROJECTOR_TYPE_NAMES: dict[VISION_PROJECTOR_TYPE, str] = {
Expand Down Expand Up @@ -2070,6 +2072,21 @@ class MODEL_TENSOR(IntEnum):
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.ARCEE: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
# TODO
}

Expand Down
19 changes: 19 additions & 0 deletions src/llama-arch.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_PLM, "plm" },
{ LLM_ARCH_BAILINGMOE, "bailingmoe" },
{ LLM_ARCH_DOTS1, "dots1" },
{ LLM_ARCH_ARCEE, "arcee" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};

Expand Down Expand Up @@ -244,6 +245,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_ARCEE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_LLAMA4,
{
Expand Down
1 change: 1 addition & 0 deletions src/llama-arch.h
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@ enum llm_arch {
LLM_ARCH_PLM,
LLM_ARCH_BAILINGMOE,
LLM_ARCH_DOTS1,
LLM_ARCH_ARCEE,
LLM_ARCH_UNKNOWN,
};

Expand Down
181 changes: 181 additions & 0 deletions src/llama-model.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -599,6 +599,16 @@ void llama_model::load_hparams(llama_model_loader & ml) {
hparams.use_kq_norm = false;
}
} break;
case LLM_ARCH_ARCEE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);

// Arcee uses the same structure as Llama
switch (hparams.n_layer) {
case 36: type = LLM_TYPE_4B; break;
default: type = LLM_TYPE_UNKNOWN;
}
} break;
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
Expand Down Expand Up @@ -4190,6 +4200,37 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
case LLM_ARCH_ARCEE:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);

// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);

// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}

for (int i = 0; i < n_layer; ++i) {
auto & layer = layers[i];

layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);

layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);

layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);

layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));

layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
Expand Down Expand Up @@ -13411,6 +13452,141 @@ struct llm_build_dots1 : public llm_graph_context {
}
};

struct llm_build_arcee : public llm_graph_context {
llm_build_arcee(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;

GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);

ggml_tensor * cur;
ggml_tensor * inpL;

inpL = build_inp_embd(model.tok_embd);

// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();

auto * inp_attn = build_attn_inp_kv_unified();

const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;

for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;

// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "attn_norm", il);

// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);

// compute Q and K and RoPE them
ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}

ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}

ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}

Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);

Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);

Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);

cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);

cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}

if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}

ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);

// feed-forward network
// ARCEE uses relu^2 instead of silu
cur = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);

cur = build_ffn(cur,
model.layers[il].ffn_up, NULL, NULL,
NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, NULL,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Seems like the only different from AFM and llama is only this activation function.

Not sure if in the future, we can abstract out this activation definition per-model (maybe as a hparam or a variable inside struct llm_build_llama?) to avoid too much duplicated code. WDYT @ggerganov ?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It also lacks the FFN gate, but maybe could also be abstracted?

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

if the gate is not present, its value will be nullptr, and build_ffn will skip the nullptr value, so no further modification is required.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ah right that makes sense ! yeah definitely seems worth considering some extra abstraction here then

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

btw I'm just bring this up for further discussion. Feel free to merge the current PR without that

cb(cur, "ffn_out", il);

cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);

cur = build_cvec(cur, il);
cb(cur, "l_out", il);

// input for next layer
inpL = cur;
}

cur = inpL;

cur = build_norm(cur,
model.output_norm, NULL,
LLM_NORM_RMS, -1);

cb(cur, "result_norm", -1);
res->t_embd = cur;

// lm_head
cur = build_lora_mm(model.output, cur);

cb(cur, "result_output", -1);
res->t_logits = cur;

ggml_build_forward_expand(gf, cur);
}
};

llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
llama_memory_i * res;

Expand Down Expand Up @@ -13753,6 +13929,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_dots1>(*this, params, gf);
} break;
case LLM_ARCH_ARCEE:
{
llm = std::make_unique<llm_build_arcee>(*this, params, gf);
} break;
default:
GGML_ABORT("fatal error");
}
Expand Down Expand Up @@ -13902,6 +14082,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
case LLM_ARCH_BAILINGMOE:
case LLM_ARCH_ARCEE:
return LLAMA_ROPE_TYPE_NORM;

// the pairs of head values are offset by n_rot/2
Expand Down
1 change: 1 addition & 0 deletions src/llama-vocab.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1987,6 +1987,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|eom_id|>"
|| t.first == "<EOT>"
|| t.first == "_<EOT>"
|| t.first == "<|end_of_text|>"
) {
special_eog_ids.insert(t.second);
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
Expand Down
Loading