Description
What happened?
I'm using the openai
library to interact with llama-server
docker image on an A6000:
docker run -p 8080:8080 --name llama-server -v ~/gguf_models:/models --gpus all ghcr.io/ggerganov/llama.cpp:server-cuda -m models/Meta-Llama-3.1-70B-Instruct-Q4_K_L.gguf -c 65536 -fa --host 0.0.0.0 --port 8080 --n-gpu-layers 99 -ctk q4_0 -ctv q4_0 -t 4
The first request I send takes about 80 seconds, during which at first a single CPU core gets 100% load for maybe ~55s (with GPU usage at 0%) and only then the GPU kicks in. The second time I execute the exact same call, it takes ~26s to respond and starts with both CPU (one core 100%) and GPU (~87%) working a the same time.
The API call itself is:
import openai # openai-1.45.0
api_url = 'http://x.x.x.x:8080'
client = openai.OpenAI(
base_url=f"{api_url}/v1",
api_key = "unused"
)
messages = [
{"role": "system", "content": "You are a helpful assistant. Your top priority is answering user questions truthfully, based solely on the information provided."},
{"role": "user", "content": prompt} # prompt is around 450 words
]
completion = client.chat.completions.create(
model=None,
temperature=0.0,
messages=messages
).choices[0].message
Name and Version
$./llama-server --version
version: 0 (unknown)
built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
^^^ not very helpful but I have just pulled a fresh docker image today i.e. 15/09/2024:
docker pull ghcr.io/ggerganov/llama.cpp:server-cuda
What operating system are you seeing the problem on?
Linux
Relevant log output
warn: LLAMA_ARG_HOST environment variable is set, but will be overwritten by command line argument --host
INFO [ main] build info | tid="126087453233152" timestamp=1726381552 build=0 commit="unknown"
INFO [ main] system info | tid="126087453233152" timestamp=1726381552 n_threads=4 n_threads_batch=4 total_threads=36 system_info="AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
INFO [ main] HTTP server is listening | tid="126087453233152" timestamp=1726381552 n_threads_http="35" port="8080" hostname="0.0.0.0"
INFO [ main] loading model | tid="126087453233152" timestamp=1726381552 n_threads_http="35" port="8080" hostname="0.0.0.0"
llama_model_loader: loaded meta data with 33 key-value pairs and 724 tensors from models/Meta-Llama-3.1-70B-Instruct-Q4_K_L.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Meta Llama 3.1 70B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Meta-Llama-3.1
llama_model_loader: - kv 5: general.size_label str = 70B
llama_model_loader: - kv 6: general.license str = llama3.1
llama_model_loader: - kv 7: general.tags arr[str,6] = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv 8: general.languages arr[str,8] = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv 9: llama.block_count u32 = 80
llama_model_loader: - kv 10: llama.context_length u32 = 131072
llama_model_loader: - kv 11: llama.embedding_length u32 = 8192
llama_model_loader: - kv 12: llama.feed_forward_length u32 = 28672
llama_model_loader: - kv 13: llama.attention.head_count u32 = 64
llama_model_loader: - kv 14: llama.attention.head_count_kv u32 = 8
llama_model_loader: - kv 15: llama.rope.freq_base f32 = 500000.000000
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 17: general.file_type u32 = 15
llama_model_loader: - kv 18: llama.vocab_size u32 = 128256
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 20: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 21: tokenizer.ggml.pre str = llama-bpe
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,128256] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 23: tokenizer.ggml.token_type arr[i32,128256] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 24: tokenizer.ggml.merges arr[str,280147] = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 128000
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 128009
llama_model_loader: - kv 27: tokenizer.chat_template str = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv 28: general.quantization_version u32 = 2
llama_model_loader: - kv 29: quantize.imatrix.file str = /models_out/Meta-Llama-3.1-70B-Instru...
llama_model_loader: - kv 30: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt
llama_model_loader: - kv 31: quantize.imatrix.entries_count i32 = 560
llama_model_loader: - kv 32: quantize.imatrix.chunks_count i32 = 125
llama_model_loader: - type f32: 162 tensors
llama_model_loader: - type q8_0: 2 tensors
llama_model_loader: - type q4_K: 440 tensors
llama_model_loader: - type q5_K: 40 tensors
llama_model_loader: - type q6_K: 80 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.7999 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 128256
llm_load_print_meta: n_merges = 280147
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 131072
llm_load_print_meta: n_embd = 8192
llm_load_print_meta: n_layer = 80
llm_load_print_meta: n_head = 64
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 8
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 28672
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 131072
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 70B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 70.55 B
llm_load_print_meta: model size = 40.32 GiB (4.91 BPW)
llm_load_print_meta: general.name = Meta Llama 3.1 70B Instruct
llm_load_print_meta: BOS token = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token = 128009 '<|eot_id|>'
llm_load_print_meta: LF token = 128 'Ä'
llm_load_print_meta: EOT token = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA RTX A6000, compute capability 8.6, VMM: yes
llm_load_tensors: ggml ctx size = 0.68 MiB
llm_load_tensors: offloading 80 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 81/81 layers to GPU
llm_load_tensors: CPU buffer size = 1064.62 MiB
llm_load_tensors: CUDA0 buffer size = 40222.18 MiB
.................................................................................................
llama_new_context_with_model: n_ctx = 65536
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 5760.00 MiB
llama_new_context_with_model: KV self size = 5760.00 MiB, K (q4_0): 2880.00 MiB, V (q4_0): 2880.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.98 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 266.50 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 144.01 MiB
llama_new_context_with_model: graph nodes = 2247
llama_new_context_with_model: graph splits = 2
INFO [ init] initializing slots | tid="126087453233152" timestamp=1726381574 n_slots=1
INFO [ init] new slot | tid="126087453233152" timestamp=1726381574 id_slot=0 n_ctx_slot=65536
INFO [ main] model loaded | tid="126087453233152" timestamp=1726381574
INFO [ main] chat template | tid="126087453233152" timestamp=1726381574 chat_example="<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHow are you?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" built_in=true
INFO [ update_slots] all slots are idle | tid="126087453233152" timestamp=1726381574
INFO [ log_server_request] request | tid="126086914506752" timestamp=1726381582 remote_addr="127.0.0.1" remote_port=35744 status=200 method="GET" path="/health" params={}
INFO [ launch_slot_with_task] slot is processing task | tid="126087453233152" timestamp=1726381587 id_slot=0 id_task=0
INFO [ update_slots] kv cache rm [p0, end) | tid="126087453233152" timestamp=1726381587 id_slot=0 id_task=0 p0=0
INFO [ log_server_request] request | tid="126086815940608" timestamp=1726381613 remote_addr="127.0.0.1" remote_port=59038 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086805454848" timestamp=1726381643 remote_addr="127.0.0.1" remote_port=35914 status=200 method="GET" path="/health" params={}
INFO [ release] slot released | tid="126087453233152" timestamp=1726381666 id_slot=0 id_task=0 n_past=1011 truncated=false
INFO [ print_timings] prompt eval time = 39264.22 ms / 685 tokens ( 57.32 ms per token, 17.45 tokens per second) | tid="126087453233152" timestamp=1726381666 id_slot=0 id_task=0 t_prompt_processing=39264.217 n_prompt_tokens_processed=685 t_token=57.320024817518245 n_tokens_second=17.44591010181102
INFO [ print_timings] generation eval time = 40157.40 ms / 327 runs ( 122.81 ms per token, 8.14 tokens per second) | tid="126087453233152" timestamp=1726381666 id_slot=0 id_task=0 t_token_generation=40157.401 n_decoded=327 t_token=122.80550764525994 n_tokens_second=8.142957259609506
INFO [ print_timings] total time = 79421.62 ms | tid="126087453233152" timestamp=1726381666 id_slot=0 id_task=0 t_prompt_processing=39264.217 t_token_generation=40157.401 t_total=79421.61799999999
INFO [ update_slots] all slots are idle | tid="126087453233152" timestamp=1726381666
INFO [ log_server_request] request | tid="126086904020992" timestamp=1726381666 remote_addr="10.147.20.194" remote_port=47472 status=200 method="POST" path="/v1/chat/completions" params={}
INFO [ launch_slot_with_task] slot is processing task | tid="126087453233152" timestamp=1726381670 id_slot=0 id_task=328
INFO [ update_slots] kv cache rm [p0, end) | tid="126087453233152" timestamp=1726381670 id_slot=0 id_task=328 p0=0
INFO [ log_server_request] request | tid="126086794969088" timestamp=1726381673 remote_addr="127.0.0.1" remote_port=44812 status=200 method="GET" path="/health" params={}
INFO [ release] slot released | tid="126087453233152" timestamp=1726381696 id_slot=0 id_task=328 n_past=1011 truncated=false
INFO [ print_timings] prompt eval time = 1319.62 ms / 685 tokens ( 1.93 ms per token, 519.09 tokens per second) | tid="126087453233152" timestamp=1726381696 id_slot=0 id_task=328 t_prompt_processing=1319.625 n_prompt_tokens_processed=685 t_token=1.9264598540145985 n_tokens_second=519.0868617978592
INFO [ print_timings] generation eval time = 24725.42 ms / 327 runs ( 75.61 ms per token, 13.23 tokens per second) | tid="126087453233152" timestamp=1726381696 id_slot=0 id_task=328 t_token_generation=24725.416 n_decoded=327 t_token=75.61289296636086 n_tokens_second=13.225257767149397
INFO [ print_timings] total time = 26045.04 ms | tid="126087453233152" timestamp=1726381696 id_slot=0 id_task=328 t_prompt_processing=1319.625 t_token_generation=24725.416 t_total=26045.041
INFO [ update_slots] all slots are idle | tid="126087453233152" timestamp=1726381696
INFO [ log_server_request] request | tid="126086904020992" timestamp=1726381696 remote_addr="10.147.20.194" remote_port=47472 status=200 method="POST" path="/v1/chat/completions" params={}
INFO [ log_server_request] request | tid="126086763511808" timestamp=1726381703 remote_addr="127.0.0.1" remote_port=57226 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086773997568" timestamp=1726381733 remote_addr="127.0.0.1" remote_port=58518 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086784483328" timestamp=1726381763 remote_addr="127.0.0.1" remote_port=36938 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086753026048" timestamp=1726381793 remote_addr="127.0.0.1" remote_port=34366 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086742540288" timestamp=1726381823 remote_addr="127.0.0.1" remote_port=36110 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086721568768" timestamp=1726381853 remote_addr="127.0.0.1" remote_port=41308 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086732054528" timestamp=1726381883 remote_addr="127.0.0.1" remote_port=44500 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086711083008" timestamp=1726381913 remote_addr="127.0.0.1" remote_port=51098 status=200 method="GET" path="/health" params={}
INFO [ log_server_request] request | tid="126086700597248" timestamp=1726381943 remote_addr="127.0.0.1" remote_port=39654 status=200 method="GET" path="/health" params={}