Skip to content

Eval bug: Qwen3-VL-30B-A3B models produces garbage #16960

@catap

Description

@catap

Name and Version

$ llama-server --version
load_backend: loaded CPU backend from /usr/local/lib/libggml-cpu.so
version: 0 (unknown)
built with OpenBSD clang version 19.1.7 for amd64-unknown-openbsd7.8

It is built from llama-cpp b6929 and ggml 09aa758381718f7731c148238574a7e169001f13

Operating systems

BSD

GGML backends

CPU

Hardware

AMD Ryzen 9 7950X3D

Models

-hf unsloth/Qwen3-VL-30B-A3B-Instruct-GGUF:Q4_K_M fails

-hf unsloth/Qwen3-VL-8B-Instruct-GGUF:Q4_K_M works as expected

Problem description & steps to reproduce

Just write anything in web chat, and get garbage:

Image

First Bad Commit

No response

Relevant log output

load_backend: loaded CPU backend from /usr/local/lib/libggml-cpu.so
* Host huggingface.co:443 was resolved.
* IPv6: 2600:9000:2204:c600:17:b174:6d00:93a1, 2600:9000:2204:f400:17:b174:6d00:93a1, 2600:9000:2204:6a00:17:b174:6d00:93a1, 2600:9000:2204:1c00:17:b174:6d00:93a1, 2600:9000:2204:2600:17:b174:6d00:93a1, 2600:9000:2204:da00:17:b174:6d00:93a1, 2600:9000:2204:8400:17:b174:6d00:93a1, 2600:9000:2204:b000:17:b174:6d00:93a1
* IPv4: 52.222.136.92, 52.222.136.89, 52.222.136.38, 52.222.136.117
*   Trying [2600:9000:2204:c600:17:b174:6d00:93a1]:443...
* ALPN: curl offers h2,http/1.1
*  CAfile: /etc/ssl/cert.pem
*  CApath: none
* SSL connection using TLSv1.3 / TLS_AES_128_GCM_SHA256 / [blank] / UNDEF
* ALPN: server accepted h2
* Server certificate:
*  subject: CN=huggingface.co
*  start date: Apr 13 00:00:00 2025 GMT
*  expire date: May 12 23:59:59 2026 GMT
*  subjectAltName: host "huggingface.co" matched cert's "huggingface.co"
*  issuer: C=US; O=Amazon; CN=Amazon RSA 2048 M02
*  SSL certificate verify ok.
*   Certificate level 0: Public key type ? (2048/112 Bits/secBits), signed using sha256WithRSAEncryption
*   Certificate level 1: Public key type ? (2048/112 Bits/secBits), signed using sha256WithRSAEncryption
*   Certificate level 2: Public key type ? (2048/112 Bits/secBits), signed using sha256WithRSAEncryption
* Established connection to huggingface.co (2600:9000:2204:c600:17:b174:6d00:93a1 port 443) from 2a01:4f8:2210:1460::2 port 28688 
* using HTTP/2
* [HTTP/2] [1] OPENED stream for https://huggingface.co/v2/unsloth/Qwen3-VL-30B-A3B-Instruct-GGUF/manifests/Q4_K_M
* [HTTP/2] [1] [:method: GET]
* [HTTP/2] [1] [:scheme: https]
* [HTTP/2] [1] [:authority: huggingface.co]
* [HTTP/2] [1] [:path: /v2/unsloth/Qwen3-VL-30B-A3B-Instruct-GGUF/manifests/Q4_K_M]
* [HTTP/2] [1] [user-agent: llama-cpp]
* [HTTP/2] [1] [accept: application/json]
> GET /v2/unsloth/Qwen3-VL-30B-A3B-Instruct-GGUF/manifests/Q4_K_M HTTP/2
Host: huggingface.co
User-Agent: llama-cpp
Accept: application/json

* Request completely sent off
< HTTP/2 200 
< content-type: application/json; charset=utf-8
< content-length: 1419
< date: Mon, 03 Nov 2025 08:47:02 GMT
< etag: W/"58b-9F45NMqwqaXX3BABlxY8CqPk74g"
< x-powered-by: huggingface-moon
< x-request-id: Root=1-69086c06-76dd807155ee011e67cf8951
< ratelimit: "pages";r=97;t=194
< ratelimit-policy: "fixed window";"pages";q=100;w=300
< cross-origin-opener-policy: same-origin
< referrer-policy: strict-origin-when-cross-origin
< access-control-max-age: 86400
< access-control-allow-origin: https://huggingface.co
< vary: Origin
< access-control-expose-headers: X-Repo-Commit,X-Request-Id,X-Error-Code,X-Error-Message,X-Total-Count,ETag,Link,Accept-Ranges,Content-Range,X-Linked-Size,X-Linked-ETag,X-Xet-Hash
< x-cache: Miss from cloudfront
< via: 1.1 06659e009eac6940f260d2b396e0460c.cloudfront.net (CloudFront)
< x-amz-cf-pop: FRA50-P2
< x-amz-cf-id: IOVfx-WdMOBuvbSvob6tP-S4k-T1AW62PX2zXILnr7EDw9yjpdn3iA==
< 
* Connection #0 to host huggingface.co:443 left intact
common_download_file_single_online: using cached file: /home/catap/.cache/llama.cpp/unsloth_Qwen3-VL-30B-A3B-Instruct-GGUF_Qwen3-VL-30B-A3B-Instruct-Q4_K_M.gguf
common_download_file_single_online: using cached file: /home/catap/.cache/llama.cpp/unsloth_Qwen3-VL-30B-A3B-Instruct-GGUF_mmproj-F16.gguf
main: setting n_parallel = 4 and kv_unified = true
�[0mbuild: 0 (unknown) with OpenBSD clang version 19.1.7 for amd64-unknown-openbsd7.8
system info: n_threads = 32, n_threads_batch = 32, total_threads = 32

system_info: n_threads = 32 (n_threads_batch = 32) / 32 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | REPACK = 1 | 

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 31
main: loading model
srv    load_model: loading model '/home/catap/.cache/llama.cpp/unsloth_Qwen3-VL-30B-A3B-Instruct-GGUF_Qwen3-VL-30B-A3B-Instruct-Q4_K_M.gguf'
llama_model_loader: loaded meta data with 45 key-value pairs and 579 tensors from /home/catap/.cache/llama.cpp/unsloth_Qwen3-VL-30B-A3B-Instruct-GGUF_Qwen3-VL-30B-A3B-Instruct-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen3vlmoe
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen3-Vl-30B-A3B-Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Qwen3-Vl-30B-A3B-Instruct
llama_model_loader: - kv   5:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   6:                         general.size_label str              = 30B-A3B
llama_model_loader: - kv   7:                            general.license str              = apache-2.0
llama_model_loader: - kv   8:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   9:                   general.base_model.count u32              = 1
llama_model_loader: - kv  10:                  general.base_model.0.name str              = Qwen3 VL 30B A3B Instruct
llama_model_loader: - kv  11:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  12:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen3-VL-...
llama_model_loader: - kv  13:                               general.tags arr[str,2]       = ["unsloth", "image-text-to-text"]
llama_model_loader: - kv  14:                     qwen3vlmoe.block_count u32              = 48
llama_model_loader: - kv  15:                  qwen3vlmoe.context_length u32              = 262144
llama_model_loader: - kv  16:                qwen3vlmoe.embedding_length u32              = 2048
llama_model_loader: - kv  17:             qwen3vlmoe.feed_forward_length u32              = 6144
llama_model_loader: - kv  18:            qwen3vlmoe.attention.head_count u32              = 32
llama_model_loader: - kv  19:         qwen3vlmoe.attention.head_count_kv u32              = 4
llama_model_loader: - kv  20:                  qwen3vlmoe.rope.freq_base f32              = 5000000.000000
llama_model_loader: - kv  21: qwen3vlmoe.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  22:               qwen3vlmoe.expert_used_count u32              = 8
llama_model_loader: - kv  23:            qwen3vlmoe.attention.key_length u32              = 128
llama_model_loader: - kv  24:          qwen3vlmoe.attention.value_length u32              = 128
llama_model_loader: - kv  25:                    qwen3vlmoe.expert_count u32              = 128
llama_model_loader: - kv  26:      qwen3vlmoe.expert_feed_forward_length u32              = 768
llama_model_loader: - kv  27:         qwen3vlmoe.rope.dimension_sections arr[i32,4]       = [24, 20, 20, 0]
llama_model_loader: - kv  28:              qwen3vlmoe.n_deepstack_layers u32              = 3
llama_model_loader: - kv  29:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  30:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  31:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  32:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  33:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  34:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  35:            tokenizer.ggml.padding_token_id u32              = 151654
llama_model_loader: - kv  36:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  37:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  38:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  39:               general.quantization_version u32              = 2
llama_model_loader: - kv  40:                          general.file_type u32              = 15
llama_model_loader: - kv  41:                      quantize.imatrix.file str              = Qwen3-VL-30B-A3B-Instruct-GGUF/imatri...
llama_model_loader: - kv  42:                   quantize.imatrix.dataset str              = unsloth_calibration_Qwen3-VL-30B-A3B-...
llama_model_loader: - kv  43:             quantize.imatrix.entries_count u32              = 384
llama_model_loader: - kv  44:              quantize.imatrix.chunks_count u32              = 694
llama_model_loader: - type  f32:  241 tensors
llama_model_loader: - type q4_K:  289 tensors
llama_model_loader: - type q6_K:   49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 17.28 GiB (4.86 BPW) 
load: printing all EOG tokens:
load:   - 151643 ('<|endoftext|>')
load:   - 151645 ('<|im_end|>')
load:   - 151662 ('<|fim_pad|>')
load:   - 151663 ('<|repo_name|>')
load:   - 151664 ('<|file_sep|>')
load: special tokens cache size = 26
load: token to piece cache size = 0.9311 MB
print_info: arch             = qwen3vlmoe
print_info: vocab_only       = 0
print_info: n_ctx_train      = 262144
print_info: n_embd           = 8192
print_info: n_layer          = 48
print_info: n_head           = 32
print_info: n_head_kv        = 4
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 8
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 6144
print_info: n_expert         = 128
print_info: n_expert_used    = 8
print_info: n_expert_groups  = 0
print_info: n_group_used     = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 40
print_info: rope scaling     = linear
print_info: freq_base_train  = 5000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 262144
print_info: rope_finetuned   = unknown
print_info: mrope sections   = [24, 20, 20, 0]
print_info: model type       = 30B.A3B
print_info: model params     = 30.53 B
print_info: general.name     = Qwen3-Vl-30B-A3B-Instruct
print_info: n_ff_exp         = 768
print_info: vocab type       = BPE
print_info: n_vocab          = 151936
print_info: n_merges         = 151387
print_info: BOS token        = 151643 '<|endoftext|>'
print_info: EOS token        = 151645 '<|im_end|>'
print_info: EOT token        = 151645 '<|im_end|>'
print_info: PAD token        = 151654 '<|vision_pad|>'
print_info: LF token         = 198 'Ċ'
print_info: FIM PRE token    = 151659 '<|fim_prefix|>'
print_info: FIM SUF token    = 151661 '<|fim_suffix|>'
print_info: FIM MID token    = 151660 '<|fim_middle|>'
print_info: FIM PAD token    = 151662 '<|fim_pad|>'
print_info: FIM REP token    = 151663 '<|repo_name|>'
print_info: FIM SEP token    = 151664 '<|file_sep|>'
print_info: EOG token        = 151643 '<|endoftext|>'
print_info: EOG token        = 151645 '<|im_end|>'
print_info: EOG token        = 151662 '<|fim_pad|>'
print_info: EOG token        = 151663 '<|repo_name|>'
print_info: EOG token        = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors:   CPU_Mapped model buffer size = 17583.34 MiB
load_tensors:   CPU_REPACK model buffer size = 13432.50 MiB
...................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 4
llama_context: n_ctx         = 262144
llama_context: n_ctx_seq     = 262144
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = auto
llama_context: kv_unified    = true
llama_context: freq_base     = 5000000.0
llama_context: freq_scale    = 1
llama_context:        CPU  output buffer size =     2.32 MiB
llama_kv_cache:        CPU KV buffer size = 24576.00 MiB
llama_kv_cache: size = 24576.00 MiB (262144 cells,  48 layers,  4/1 seqs), K (f16): 12288.00 MiB, V (f16): 12288.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context:        CPU compute buffer size =   792.02 MiB
llama_context: graph nodes  = 3031
llama_context: graph splits = 1
common_init_from_params: added <|endoftext|> logit bias = -inf
common_init_from_params: added <|im_end|> logit bias = -inf
common_init_from_params: added <|fim_pad|> logit bias = -inf
common_init_from_params: added <|repo_name|> logit bias = -inf
common_init_from_params: added <|file_sep|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 262144
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
�[0mclip_model_loader: model name:   Qwen3-Vl-30B-A3B-Instruct
clip_model_loader: description:  
clip_model_loader: GGUF version: 3
clip_model_loader: alignment:    32
clip_model_loader: n_tensors:    352
clip_model_loader: n_kv:         31

clip_model_loader: has vision encoder
clip_ctx: CLIP using CPU backend
load_hparams: projector:          qwen3vl_merger
load_hparams: n_embd:             1152
load_hparams: n_head:             16
load_hparams: n_ff:               4304
load_hparams: n_layer:            27
load_hparams: ffn_op:             gelu
load_hparams: projection_dim:     2048

--- vision hparams ---
load_hparams: image_size:         768
load_hparams: patch_size:         16
load_hparams: has_llava_proj:     0
load_hparams: minicpmv_version:   0
load_hparams: n_merge:            2
load_hparams: n_wa_pattern:       0
load_hparams: image_min_pixels:   8192
load_hparams: image_max_pixels:   2097152

load_hparams: model size:         1033.29 MiB
load_hparams: metadata size:      0.12 MiB
alloc_compute_meta: warmup with image size = 512 x 512
alloc_compute_meta:        CPU compute buffer size =    43.52 MiB
alloc_compute_meta: graph splits = 1, nodes = 853
warmup: flash attention is enabled
srv    load_model: loaded multimodal model, '/home/catap/.cache/llama.cpp/unsloth_Qwen3-VL-30B-A3B-Instruct-GGUF_mmproj-F16.gguf'
srv    load_model: ctx_shift is not supported by multimodal, it will be disabled
�[0msrv          init: initializing slots, n_slots = 4
slot         init: id  0 | task -1 | new slot, n_ctx = 262144
slot         init: id  1 | task -1 | new slot, n_ctx = 262144
slot         init: id  2 | task -1 | new slot, n_ctx = 262144
slot         init: id  3 | task -1 | new slot, n_ctx = 262144
srv          init: prompt cache is enabled, size limit: 8192 MiB
�[0msrv          init: use `--cache-ram 0` to disable the prompt cache
�[0msrv          init: for more info see https://github.com/ggml-org/llama.cpp/pull/16391
�[0msrv          init: thinking = 0
main: model loaded
main: chat template, chat_template: {%- if tools %}
    {{- '<|im_start|>system\n' }}
    {%- if messages[0].role == 'system' %}
        {%- if messages[0].content is string %}
            {{- messages[0].content }}
        {%- else %}
            {%- for content in messages[0].content %}
                {%- if 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '\n\n' }}
    {%- endif %}
    {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
    {%- for tool in tools %}
        {{- "\n" }}
        {{- tool | tojson }}
    {%- endfor %}
    {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
{%- else %}
    {%- if messages[0].role == 'system' %}
        {{- '<|im_start|>system\n' }}
        {%- if messages[0].content is string %}
            {{- messages[0].content }}
        {%- else %}
            {%- for content in messages[0].content %}
                {%- if 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- endif %}
{%- endif %}
{%- set image_count = namespace(value=0) %}
{%- set video_count = namespace(value=0) %}
{%- for message in messages %}
    {%- if message.role == "user" %}
        {{- '<|im_start|>' + message.role + '\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content in message.content %}
                {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
                    {%- set image_count.value = image_count.value + 1 %}
                    {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
                    <|vision_start|><|image_pad|><|vision_end|>
                {%- elif content.type == 'video' or 'video' in content %}
                    {%- set video_count.value = video_count.value + 1 %}
                    {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
                    <|vision_start|><|video_pad|><|vision_end|>
                {%- elif 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "assistant" %}
        {{- '<|im_start|>' + message.role + '\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content_item in message.content %}
                {%- if 'text' in content_item %}
                    {{- content_item.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {%- if message.tool_calls %}
            {%- for tool_call in message.tool_calls %}
                {%- if (loop.first and message.content) or (not loop.first) %}
                    {{- '\n' }}
                {%- endif %}
                {%- if tool_call.function %}
                    {%- set tool_call = tool_call.function %}
                {%- endif %}
                {{- '<tool_call>\n{"name": "' }}
                {{- tool_call.name }}
                {{- '", "arguments": ' }}
                {%- if tool_call.arguments is string %}
                    {{- tool_call.arguments }}
                {%- else %}
                    {{- tool_call.arguments | tojson }}
                {%- endif %}
                {{- '}\n</tool_call>' }}
            {%- endfor %}
        {%- endif %}
        {{- '<|im_end|>\n' }}
    {%- elif message.role == "tool" %}
        {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
            {{- '<|im_start|>user' }}
        {%- endif %}
        {{- '\n<tool_response>\n' }}
        {%- if message.content is string %}
            {{- message.content }}
        {%- else %}
            {%- for content in message.content %}
                {%- if content.type == 'image' or 'image' in content or 'image_url' in content %}
                    {%- set image_count.value = image_count.value + 1 %}
                    {%- if add_vision_id %}Picture {{ image_count.value }}: {% endif -%}
                    <|vision_start|><|image_pad|><|vision_end|>
                {%- elif content.type == 'video' or 'video' in content %}
                    {%- set video_count.value = video_count.value + 1 %}
                    {%- if add_vision_id %}Video {{ video_count.value }}: {% endif -%}
                    <|vision_start|><|video_pad|><|vision_end|>
                {%- elif 'text' in content %}
                    {{- content.text }}
                {%- endif %}
            {%- endfor %}
        {%- endif %}
        {{- '\n</tool_response>' }}
        {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
            {{- '<|im_end|>\n' }}
        {%- endif %}
    {%- endif %}
{%- endfor %}
{%- if add_generation_prompt %}
    {{- '<|im_start|>assistant\n' }}
{%- endif %}
, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:8080 - starting the main loop
srv  update_slots: all slots are idle
srv  log_server_r: request: GET / 127.0.0.1 200
srv  log_server_r: request: GET /props 127.0.0.1 200
srv  log_server_r: request: GET /props 127.0.0.1 200
srv  log_server_r: request: GET /props 127.0.0.1 200
srv  update_slots: all slots are idle
srv  log_server_r: request: GET /slots 127.0.0.1 200
srv  log_server_r: request: GET /props 127.0.0.1 200
srv  log_server_r: request: GET /props 127.0.0.1 200
srv  params_from_: Chat format: Content-only
slot get_availabl: id  3 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id  3 | task 1 | processing task
slot update_slots: id  3 | task 1 | new prompt, n_ctx_slot = 262144, n_keep = 0, task.n_tokens = 10
slot update_slots: id  3 | task 1 | n_tokens = 0, memory_seq_rm [0, end)
slot update_slots: id  3 | task 1 | prompt processing progress, n_tokens = 10, batch.n_tokens = 10, progress = 1.000000
slot update_slots: id  3 | task 1 | prompt done, n_tokens = 10, batch.n_tokens = 10
srv  log_server_r: request: GET /props 127.0.0.1 200
srv  log_server_r: request: GET /slots 127.0.0.1 200
srv  log_server_r: request: GET /slots 127.0.0.1 200
srv  log_server_r: request: GET /slots 127.0.0.1 200
srv  log_server_r: request: GET /slots 127.0.0.1 200
srv  cancel_tasks: cancel task, id_task = 1
�[0msrv  log_server_r: request: POST /v1/chat/completions 127.0.0.1 200
slot      release: id  3 | task 1 | stop processing: n_tokens = 226, truncated = 0
srv  update_slots: all slots are idle

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions