Skip to content

Eval bug: Garbled output with repack above a certain thread count #16942

@8XXD8

Description

@8XXD8

Name and Version

version: 6924 (87c9efc)
built with cc (GCC) 14.2.0 for x86_64-linux-gnu

Operating systems

Linux

GGML backends

CPU

Hardware

Epyc 7B13

Models

Qwen3VL-2B-Instruct Q4k_m
Llama 3.2 1B Instruct Q4k_m, Q3_km

Problem description & steps to reproduce

When I run llama-cli with CPU only backend, the output is garbled above a certain thread count.
Llama 3.2 1B Instruct produces correct output with 25 threads, but garbled with 26 or above.
Qwen3VL-2B-Instruct breaks above 51 threads.
Disabling repack with --no-repack fixes the issue, GPU accelerated build has no problem.
The breaking thread count is model dependent, Q3 quant of the same model breaks at the same thread count.
llama-server and llama-cli both affected.
High --threads-batch with low --threads still breaks the model.

First Bad Commit

No response

Relevant log output

/.../llama-cli -m /.../llama3.gguf --seed 1234 -p "Tell a pun" -n 32 -no-cnv -t 26
build: 6924 (87c9efc3b) with cc (GCC) 14.2.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 35 key-value pairs and 147 tensors from /home/user/text-generation-webui/models/llama3.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Llama 3.2 1B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Llama-3.2
llama_model_loader: - kv   5:                         general.size_label str              = 1B
llama_model_loader: - kv   6:                            general.license str              = llama3.2
llama_model_loader: - kv   7:                               general.tags arr[str,6]       = ["facebook", "meta", "pytorch", "llam...
llama_model_loader: - kv   8:                          general.languages arr[str,8]       = ["en", "de", "fr", "it", "pt", "hi", ...
llama_model_loader: - kv   9:                          llama.block_count u32              = 16
llama_model_loader: - kv  10:                       llama.context_length u32              = 131072
llama_model_loader: - kv  11:                     llama.embedding_length u32              = 2048
llama_model_loader: - kv  12:                  llama.feed_forward_length u32              = 8192
llama_model_loader: - kv  13:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv  14:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv  15:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv  16:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  17:                 llama.attention.key_length u32              = 64
llama_model_loader: - kv  18:               llama.attention.value_length u32              = 64
llama_model_loader: - kv  19:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  20:                 llama.rope.dimension_count u32              = 64
llama_model_loader: - kv  21:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  22:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  23:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  24:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  25:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  26:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  27:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  28:                    tokenizer.chat_template str              = {{- bos_token }}\n{%- if custom_tools ...
llama_model_loader: - kv  29:                      quantize.imatrix.file str              = /models_out/Llama-3.2-1B-Instruct-GGU...
llama_model_loader: - kv  30:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  31:             quantize.imatrix.entries_count i32              = 112
llama_model_loader: - kv  32:              quantize.imatrix.chunks_count i32              = 125
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - kv  34:                          general.file_type u32              = 12
llama_model_loader: - type  f32:   34 tensors
llama_model_loader: - type q3_K:   64 tensors
llama_model_loader: - type q4_K:   45 tensors
llama_model_loader: - type q5_K:    3 tensors
llama_model_loader: - type q6_K:    1 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q3_K - Medium
print_info: file size   = 651.37 MiB (4.42 BPW)
load: printing all EOG tokens:
load:   - 128001 ('<|end_of_text|>')
load:   - 128008 ('<|eom_id|>')
load:   - 128009 ('<|eot_id|>')
load: special tokens cache size = 256
load: token to piece cache size = 0.7999 MB
print_info: arch             = llama
print_info: vocab_only       = 0
print_info: n_ctx_train      = 131072
print_info: n_embd           = 2048
print_info: n_layer          = 16
print_info: n_head           = 32
print_info: n_head_kv        = 8
print_info: n_rot            = 64
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 64
print_info: n_embd_head_v    = 64
print_info: n_gqa            = 4
print_info: n_embd_k_gqa     = 512
print_info: n_embd_v_gqa     = 512
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 8192
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: n_expert_groups  = 0
print_info: n_group_used     = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = linear
print_info: freq_base_train  = 500000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 131072
print_info: rope_finetuned   = unknown
print_info: model type       = 1B
print_info: model params     = 1.24 B
print_info: general.name     = Llama 3.2 1B Instruct
print_info: vocab type       = BPE
print_info: n_vocab          = 128256
print_info: n_merges         = 280147
print_info: BOS token        = 128000 '<|begin_of_text|>'
print_info: EOS token        = 128009 '<|eot_id|>'
print_info: EOT token        = 128009 '<|eot_id|>'
print_info: EOM token        = 128008 '<|eom_id|>'
print_info: LF token         = 198 'Ċ'
print_info: EOG token        = 128001 '<|end_of_text|>'
print_info: EOG token        = 128008 '<|eom_id|>'
print_info: EOG token        = 128009 '<|eot_id|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors:   CPU_Mapped model buffer size =   651.37 MiB
load_tensors:   CPU_REPACK model buffer size =   178.88 MiB
............................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = auto
llama_context: kv_unified    = false
llama_context: freq_base     = 500000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     0.49 MiB
llama_kv_cache:        CPU KV buffer size =   128.00 MiB
llama_kv_cache: size =  128.00 MiB (  4096 cells,  16 layers,  1/1 seqs), K (f16):   64.00 MiB, V (f16):   64.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context:        CPU compute buffer size =   258.50 MiB
llama_context: graph nodes  = 503
llama_context: graph splits = 1
common_init_from_params: added <|end_of_text|> logit bias = -inf
common_init_from_params: added <|eom_id|> logit bias = -inf
common_init_from_params: added <|eot_id|> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 4096
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 26

system_info: n_threads = 26 (n_threads_batch = 26) / 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |

sampler seed: 1234
sampler params:
        repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
        dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 4096
        top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-n-sigma -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 4096, n_batch = 2048, n_predict = 32, n_keep = 1

Tell a pun internattatt José rulewawa troubledattattattattattWORDattattattattattattWORDđEntriesatt상 attackers Campaysлож Camp camp Minds

llama_perf_sampler_print:    sampling time =       2.77 ms /    36 runs   (    0.08 ms per token, 13001.08 tokens per second)
llama_perf_context_print:        load time =     360.93 ms
llama_perf_context_print: prompt eval time =      11.79 ms /     4 tokens (    2.95 ms per token,   339.27 tokens per second)
llama_perf_context_print:        eval time =     340.18 ms /    31 runs   (   10.97 ms per token,    91.13 tokens per second)
llama_perf_context_print:       total time =     380.82 ms /    35 tokens
llama_perf_context_print:    graphs reused =         30
llama_memory_breakdown_print: | memory breakdown [MiB] | total   free    self   model   context   compute    unaccounted |
llama_memory_breakdown_print: |   - Host               |                 1037 =   651 +     128 +     258                |
llama_memory_breakdown_print: |   - CPU_REPACK         |                  178 =   178 +       0 +       0                |

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions