Closed
Description
Name and Version
version: 5061 (916c83b)
built with MSVC 19.38.33134.0 for x64
Operating systems
Windows
GGML backends
Vulkan
Hardware
Ryzen 7 5800H + AMD Radeon RX 6600M 8GB
Models
Snowflake Arctic Embed L v2.0 Q8_0 (https://huggingface.co/Casual-Autopsy/snowflake-arctic-embed-l-v2.0-gguf/tree/main)
BGE Reranker v2 M3 Q8_0 (https://huggingface.co/gpustack/bge-reranker-v2-m3-GGUF/tree/main)
Problem description & steps to reproduce
When running an embedding model, llama.cpp server randomly crashes with GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type") failed
. Sometimes after first task, sometimes after several tasks.
First Bad Commit
No response
Relevant log output
.\llama-server.exe --embedding -ub 8192 -b 8192 -c 8192 --host 127.0.0.1 --port 8080 -m snowflake-arctic-embed-l-v2.0-q8_0.gguf -ngl 99 -fa -ctk q8_0 -ctv q8_0
ggml_vulkan: Found 1 Vulkan devices:
ggml_vulkan: 0 = AMD Radeon RX 6600M (AMD proprietary driver) | uma: 0 | fp16: 1 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
build: 5061 (916c83bf) with MSVC 19.38.33134.0 for x64
system info: n_threads = 8, n_threads_batch = 8, total_threads = 16
system_info: n_threads = 8 (n_threads_batch = 8) / 16 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8080, http threads: 15
main: loading model
srv load_model: loading model 'snowflake-arctic-embed-l-v2.0-q8_0.gguf'
llama_model_load_from_file_impl: using device Vulkan0 (AMD Radeon RX 6600M) - 8176 MiB free
llama_model_loader: loaded meta data with 36 key-value pairs and 389 tensors from snowflake-arctic-embed-l-v2.0-q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = bert
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Snowflake Arctic Embed L v2.0
llama_model_loader: - kv 3: general.version str = v2.0
llama_model_loader: - kv 4: general.basename str = snowflake-arctic-embed-l
llama_model_loader: - kv 5: general.size_label str = 567M
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.tags arr[str,8] = ["sentence-transformers", "feature-ex...
llama_model_loader: - kv 8: general.languages arr[str,74] = ["af", "ar", "az", "be", "bg", "bn", ...
llama_model_loader: - kv 9: bert.block_count u32 = 24
llama_model_loader: - kv 10: bert.context_length u32 = 8192
llama_model_loader: - kv 11: bert.embedding_length u32 = 1024
llama_model_loader: - kv 12: bert.feed_forward_length u32 = 4096
llama_model_loader: - kv 13: bert.attention.head_count u32 = 16
llama_model_loader: - kv 14: bert.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 15: general.file_type u32 = 7
llama_model_loader: - kv 16: bert.attention.causal bool = false
llama_model_loader: - kv 17: bert.pooling_type u32 = 2
llama_model_loader: - kv 18: tokenizer.ggml.model str = t5
llama_model_loader: - kv 19: tokenizer.ggml.pre str = default
llama_model_loader: - kv 20: tokenizer.ggml.tokens arr[str,250002] = ["<s>", "<pad>", "</s>", "<unk>", ","...
llama_model_loader: - kv 21: tokenizer.ggml.scores arr[f32,250002] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 22: tokenizer.ggml.token_type arr[i32,250002] = [3, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 23: tokenizer.ggml.add_space_prefix bool = true
llama_model_loader: - kv 24: tokenizer.ggml.token_type_count u32 = 1
llama_model_loader: - kv 25: tokenizer.ggml.remove_extra_whitespaces bool = true
llama_model_loader: - kv 26: tokenizer.ggml.precompiled_charsmap arr[u8,237539] = [0, 180, 2, 0, 0, 132, 0, 0, 0, 0, 0,...
llama_model_loader: - kv 27: tokenizer.ggml.bos_token_id u32 = 0
llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 29: tokenizer.ggml.unknown_token_id u32 = 3
llama_model_loader: - kv 30: tokenizer.ggml.seperator_token_id u32 = 2
llama_model_loader: - kv 31: tokenizer.ggml.padding_token_id u32 = 1
llama_model_loader: - kv 32: tokenizer.ggml.mask_token_id u32 = 250001
llama_model_loader: - kv 33: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 34: tokenizer.ggml.add_eos_token bool = true
llama_model_loader: - kv 35: general.quantization_version u32 = 2
llama_model_loader: - type f32: 244 tensors
llama_model_loader: - type q8_0: 145 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q8_0
print_info: file size = 598.63 MiB (8.86 BPW)
load: model vocab missing newline token, using special_pad_id instead
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 4
load: token to piece cache size = 2.1668 MB
print_info: arch = bert
print_info: vocab_only = 0
print_info: n_ctx_train = 8192
print_info: n_embd = 1024
print_info: n_layer = 24
print_info: n_head = 16
print_info: n_head_kv = 16
print_info: n_rot = 64
print_info: n_swa = 0
print_info: n_swa_pattern = 1
print_info: n_embd_head_k = 64
print_info: n_embd_head_v = 64
print_info: n_gqa = 1
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 1.0e-05
print_info: f_norm_rms_eps = 0.0e+00
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = 4096
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 0
print_info: pooling type = 2
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 8192
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 335M
print_info: model params = 566.70 M
print_info: general.name = Snowflake Arctic Embed L v2.0
print_info: vocab type = UGM
print_info: n_vocab = 250002
print_info: n_merges = 0
print_info: BOS token = 0 '<s>'
print_info: EOS token = 2 '</s>'
print_info: UNK token = 3 '<unk>'
print_info: SEP token = 2 '</s>'
print_info: PAD token = 1 '<pad>'
print_info: MASK token = 250001 '[PAD250000]'
print_info: LF token = 0 '<s>'
print_info: EOG token = 2 '</s>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 24 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 25/25 layers to GPU
load_tensors: Vulkan0 model buffer size = 307.22 MiB
load_tensors: CPU_Mapped model buffer size = 291.41 MiB
......................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 8192
llama_context: n_ctx_per_seq = 8192
llama_context: n_batch = 8192
llama_context: n_ubatch = 8192
llama_context: causal_attn = 0
llama_context: flash_attn = 1
llama_context: freq_base = 10000.0
llama_context: freq_scale = 1
llama_context: Vulkan_Host output buffer size = 0.00 MiB
init: kv_size = 8192, offload = 1, type_k = 'q8_0', type_v = 'q8_0', n_layer = 24, can_shift = 1
init: Vulkan0 KV buffer size = 408.00 MiB
llama_context: KV self size = 408.00 MiB, K (q8_0): 204.00 MiB, V (q8_0): 204.00 MiB
llama_context: Vulkan0 compute buffer size = 512.00 MiB
llama_context: Vulkan_Host compute buffer size = 320.09 MiB
llama_context: graph nodes = 706 (with bs=8192), 826 (with bs=1)
llama_context: graph splits = 52 (with bs=8192), 2 (with bs=1)
common_init_from_params: setting dry_penalty_last_n to ctx_size = 8192
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 8192
main: model loaded
main: chat template, chat_template: {%- for message in messages -%}
{{- '<|im_start|>' + message.role + '
' + message.content + '<|im_end|>
' -}}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{- '<|im_start|>assistant
' -}}
{%- endif -%}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:8080 - starting the main loop
srv update_slots: all slots are idle
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 8192, n_keep = 0, n_prompt_tokens = 11
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 11, n_tokens = 11, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 11, n_tokens = 11
slot release: id 0 | task 0 | stop processing: n_past = 11, truncated = 0
slot launch_slot_: id 0 | task 17 | processing task
slot update_slots: id 0 | task 17 | new prompt, n_ctx_slot = 8192, n_keep = 0, n_prompt_tokens = 1024
slot update_slots: id 0 | task 17 | kv cache rm [0, end)
slot update_slots: id 0 | task 17 | prompt processing progress, n_past = 1024, n_tokens = 1024, progress = 1.000000
slot update_slots: id 0 | task 17 | prompt done, n_past = 1024, n_tokens = 1024
C:\Sources\llama.cpp\ggml\src\ggml-cpu\ggml-cpu.c:10344: GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type") failed
C:\Sources\llama.cpp\ggml\src\ggml-cpu\ggml-cpu.c:10344: