Description
Name and Version
llama-server --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce GTX 1080 Ti, compute capability 6.1, VMM: yes
version: b4819
built with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
llama-cli --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce GTX 1080 Ti, compute capability 6.1, VMM: yes
version: b4819
built with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
Operating systems
Linux
Which llama.cpp modules do you know to be affected?
llama-server
Command line
llama-server -m /data4/qwen2.5-14b-deep-q4_k.gguf -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -ngl 160 --host 0.0.0.0
llama-server -m /data4/qwen2.5-14b-deep-q4_k.gguf -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -ngl 160 -nkvo --host 0.0.0.0
llama-cli -m /data4/qwen2.5-14b-deep-q4_k.gguf -cnv -p "You are a helpful assistant." -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -if -mli -ngl 160 -nkvo
llama-cli -m /data4/qwen2.5-14b-deep-q4_k.gguf -cnv -p "You are a helpful assistant." -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -if -mli -ngl 160
Problem description & steps to reproduce
In the same environment, with the same parameters, the inference speed of llama-server is one-third of that of llama-cli.
Command lines as follows:
llama-server -m /data4/qwen2.5-14b-deep-q4_k.gguf -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -ngl 160 --host 0.0.0.0
This parameter configuration achieves an inference speed of: 25.87 t/s
llama-server -m /data4/qwen2.5-14b-deep-q4_k.gguf -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -ngl 160 -nkvo --host 0.0.0.0
This parameter configuration achieves an inference speed of: 5.83 t/s
llama-cli -m /data4/qwen2.5-14b-deep-q4_k.gguf -cnv -p "You are a helpful assistant." -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -if -mli -ngl 160 -nkvo
This parameter configuration achieves an inference speed of: 18.25 t/s
llama-cli -m /data4/qwen2.5-14b-deep-q4_k.gguf -cnv -p "You are a helpful assistant." -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -if -mli -ngl 160
This parameter configuration achieves an inference speed of: 24.27 t/s
Although the -nkvo option leaves kv calculations on the CPU, which slows down inference speed, for example, llama-cli's speed drops from 24.27 to 18.25, which is expected behavior. However, enabling -nkvo in llama-server causes a greater-than-expected drop. On my other computers, it even drops to 0.x t/s. llama-server with -nkvo is expected to have inference speeds similar to 18.xx t/s. I have reproduced this issue in multiple computer environments. I suspect there is a bug in the thread pool usage of llama-server. Thank you for this project that allows me to run LLMs locally. Looking forward to fixing this bug.
First Bad Commit
No response
Relevant log output
./build/bin/llama-cli -m /data4/qwen2.5-14b-deep-q4_k.gguf -cnv -p "You are a helpful assistant." -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -if -mli -ngl 160
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce GTX 1080 Ti, compute capability 6.1, VMM: yes
build: 0 (unknown) with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce GTX 1080 Ti) - 11025 MiB free
llama_model_loader: loaded meta data with 25 key-value pairs and 579 tensors from /data4/qwen2.5-14b-deep-q4_k.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qw14
llama_model_loader: - kv 3: general.size_label str = 15B
llama_model_loader: - kv 4: qwen2.block_count u32 = 48
llama_model_loader: - kv 5: qwen2.context_length u32 = 131072
llama_model_loader: - kv 6: qwen2.embedding_length u32 = 5120
llama_model_loader: - kv 7: qwen2.feed_forward_length u32 = 13824
llama_model_loader: - kv 8: qwen2.attention.head_count u32 = 40
llama_model_loader: - kv 9: qwen2.attention.head_count_kv u32 = 8
llama_model_loader: - kv 10: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 11: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: general.file_type u32 = 15
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 14: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 151646
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 23: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 24: general.quantization_version u32 = 2
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 8.37 GiB (4.87 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 5120
print_info: n_layer = 48
print_info: n_head = 40
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 5
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 13824
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 14B
print_info: model params = 14.77 B
print_info: general.name = Qw14
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token = 151643 '<|end▁of▁sentence|>'
print_info: EOT token = 151643 '<|end▁of▁sentence|>'
print_info: PAD token = 151643 '<|end▁of▁sentence|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|end▁of▁sentence|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors: CUDA0 model buffer size = 8148.38 MiB
load_tensors: CPU_Mapped model buffer size = 417.66 MiB
..........................................................................................
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 512
llama_init_from_model: n_ctx_per_seq = 512
llama_init_from_model: n_batch = 512
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 1
llama_init_from_model: freq_base = 1000000.0
llama_init_from_model: freq_scale = 1
llama_init_from_model: n_ctx_per_seq (512) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 512, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
llama_kv_cache_init: CUDA0 KV buffer size = 96.00 MiB
llama_init_from_model: KV self size = 96.00 MiB, K (f16): 48.00 MiB, V (f16): 48.00 MiB
llama_init_from_model: CUDA_Host output buffer size = 0.58 MiB
llama_init_from_model: CUDA0 compute buffer size = 307.00 MiB
llama_init_from_model: CUDA_Host compute buffer size = 11.01 MiB
llama_init_from_model: graph nodes = 1495
llama_init_from_model: graph splits = 2
common_init_from_params: setting dry_penalty_last_n to ctx_size = 512
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 24
*** User-specified prompt in conversation mode will be ignored, did you mean to set --system-prompt (-sys) instead?
main: chat template example:
You are a helpful assistant
<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>
system_info: n_threads = 24 (n_threads_batch = 24) / 48 | CUDA : ARCHS = 610 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 |
main: interactive mode on.
sampler seed: 3047
sampler params:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 512
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.600
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 512, n_batch = 2048, n_predict = -1, n_keep = 1
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- To return control to the AI, end your input with '\'.
- To return control without starting a new line, end your input with '/'.
- Not using system message. To change it, set a different value via -sys PROMPT
> hello
<think>
Hello! How can I assist you today? 😊
>
llama_perf_sampler_print: sampling time = 1.69 ms / 18 runs ( 0.09 ms per token, 10663.51 tokens per second)
llama_perf_context_print: load time = 6771.74 ms
llama_perf_context_print: prompt eval time = 110.77 ms / 5 tokens ( 22.15 ms per token, 45.14 tokens per second)
llama_perf_context_print: eval time = 535.54 ms / 13 runs ( 41.20 ms per token, **24.27 tokens per second)**
llama_perf_context_print: total time = 19145.65 ms / 18 tokens
Interrupted by user
./build/bin/llama-cli -m /data4/qwen2.5-14b-deep-q4_k.gguf -cnv -p "You are a helpful assistant." -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -if -mli -ngl 160 -nkvo
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce GTX 1080 Ti, compute capability 6.1, VMM: yes
build: 0 (unknown) with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce GTX 1080 Ti) - 11025 MiB free
llama_model_loader: loaded meta data with 25 key-value pairs and 579 tensors from /data4/qwen2.5-14b-deep-q4_k.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qw14
llama_model_loader: - kv 3: general.size_label str = 15B
llama_model_loader: - kv 4: qwen2.block_count u32 = 48
llama_model_loader: - kv 5: qwen2.context_length u32 = 131072
llama_model_loader: - kv 6: qwen2.embedding_length u32 = 5120
llama_model_loader: - kv 7: qwen2.feed_forward_length u32 = 13824
llama_model_loader: - kv 8: qwen2.attention.head_count u32 = 40
llama_model_loader: - kv 9: qwen2.attention.head_count_kv u32 = 8
llama_model_loader: - kv 10: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 11: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: general.file_type u32 = 15
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 14: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 151646
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 23: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 24: general.quantization_version u32 = 2
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 8.37 GiB (4.87 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 5120
print_info: n_layer = 48
print_info: n_head = 40
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 5
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 13824
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 14B
print_info: model params = 14.77 B
print_info: general.name = Qw14
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token = 151643 '<|end▁of▁sentence|>'
print_info: EOT token = 151643 '<|end▁of▁sentence|>'
print_info: PAD token = 151643 '<|end▁of▁sentence|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|end▁of▁sentence|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors: CUDA0 model buffer size = 8148.38 MiB
load_tensors: CPU_Mapped model buffer size = 417.66 MiB
..........................................................................................
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 512
llama_init_from_model: n_ctx_per_seq = 512
llama_init_from_model: n_batch = 512
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 1
llama_init_from_model: freq_base = 1000000.0
llama_init_from_model: freq_scale = 1
llama_init_from_model: n_ctx_per_seq (512) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 512, offload = 0, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
llama_kv_cache_init: CPU KV buffer size = 96.00 MiB
llama_init_from_model: KV self size = 96.00 MiB, K (f16): 48.00 MiB, V (f16): 48.00 MiB
llama_init_from_model: CUDA_Host output buffer size = 0.58 MiB
llama_init_from_model: CUDA0 compute buffer size = 317.00 MiB
llama_init_from_model: CUDA_Host compute buffer size = 11.01 MiB
llama_init_from_model: graph nodes = 1495
llama_init_from_model: graph splits = 98
common_init_from_params: setting dry_penalty_last_n to ctx_size = 512
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 24
*** User-specified prompt in conversation mode will be ignored, did you mean to set --system-prompt (-sys) instead?
main: chat template example:
You are a helpful assistant
<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>
system_info: n_threads = 24 (n_threads_batch = 24) / 48 | CUDA : ARCHS = 610 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 |
main: interactive mode on.
sampler seed: 3047
sampler params:
repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
dry_multiplier = 0.000, dry_base = 1.750, dry_allowed_length = 2, dry_penalty_last_n = 512
top_k = 40, top_p = 0.950, min_p = 0.050, xtc_probability = 0.000, xtc_threshold = 0.100, typical_p = 1.000, top_n_sigma = -1.000, temp = 0.600
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> dry -> top-k -> typical -> top-p -> min-p -> xtc -> temp-ext -> dist
generate: n_ctx = 512, n_batch = 2048, n_predict = -1, n_keep = 1
== Running in interactive mode. ==
- Press Ctrl+C to interject at any time.
- To return control to the AI, end your input with '\'.
- To return control without starting a new line, end your input with '/'.
- Not using system message. To change it, set a different value via -sys PROMPT
> hello
<think>
Hello! How can I assist you today? 😊
>
llama_perf_sampler_print: sampling time = 1.66 ms / 18 runs ( 0.09 ms per token, 10849.91 tokens per second)
llama_perf_context_print: load time = 1985.12 ms
llama_perf_context_print: prompt eval time = 148.26 ms / 5 tokens ( 29.65 ms per token, 33.73 tokens per second)
llama_perf_context_print: eval time = 712.26 ms / 13 runs ( 54.79 ms per token, **18.25 tokens per second**)
llama_perf_context_print: total time = 4656.76 ms / 18 tokens
Interrupted by user
./build/bin/llama-server -m /data4/qwen2.5-14b-deep-q4_k.gguf -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -ngl 160 -nkvo --host 0.0.0.0
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce GTX 1080 Ti, compute capability 6.1, VMM: yes
build: 0 (unknown) with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
system info: n_threads = 24, n_threads_batch = 24, total_threads = 48
system_info: n_threads = 24 (n_threads_batch = 24) / 48 | CUDA : ARCHS = 610 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 |
main: HTTP server is listening, hostname: 0.0.0.0, port: 8080, http threads: 47
main: loading model
srv load_model: loading model '/data4/qwen2.5-14b-deep-q4_k.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce GTX 1080 Ti) - 11025 MiB free
llama_model_loader: loaded meta data with 25 key-value pairs and 579 tensors from /data4/qwen2.5-14b-deep-q4_k.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qw14
llama_model_loader: - kv 3: general.size_label str = 15B
llama_model_loader: - kv 4: qwen2.block_count u32 = 48
llama_model_loader: - kv 5: qwen2.context_length u32 = 131072
llama_model_loader: - kv 6: qwen2.embedding_length u32 = 5120
llama_model_loader: - kv 7: qwen2.feed_forward_length u32 = 13824
llama_model_loader: - kv 8: qwen2.attention.head_count u32 = 40
llama_model_loader: - kv 9: qwen2.attention.head_count_kv u32 = 8
llama_model_loader: - kv 10: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 11: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: general.file_type u32 = 15
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 14: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 151646
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 23: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 24: general.quantization_version u32 = 2
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 8.37 GiB (4.87 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 5120
print_info: n_layer = 48
print_info: n_head = 40
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 5
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 13824
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 14B
print_info: model params = 14.77 B
print_info: general.name = Qw14
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token = 151643 '<|end▁of▁sentence|>'
print_info: EOT token = 151643 '<|end▁of▁sentence|>'
print_info: PAD token = 151643 '<|end▁of▁sentence|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|end▁of▁sentence|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors: CUDA0 model buffer size = 8148.38 MiB
load_tensors: CPU_Mapped model buffer size = 417.66 MiB
..........................................................................................
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 512
llama_init_from_model: n_ctx_per_seq = 512
llama_init_from_model: n_batch = 512
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 1
llama_init_from_model: freq_base = 1000000.0
llama_init_from_model: freq_scale = 1
llama_init_from_model: n_ctx_per_seq (512) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 512, offload = 0, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
llama_kv_cache_init: CPU KV buffer size = 96.00 MiB
llama_init_from_model: KV self size = 96.00 MiB, K (f16): 48.00 MiB, V (f16): 48.00 MiB
llama_init_from_model: CUDA_Host output buffer size = 0.58 MiB
llama_init_from_model: CUDA0 compute buffer size = 317.00 MiB
llama_init_from_model: CUDA_Host compute buffer size = 11.01 MiB
llama_init_from_model: graph nodes = 1495
llama_init_from_model: graph splits = 98
common_init_from_params: setting dry_penalty_last_n to ctx_size = 512
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 512
main: model loaded
main: chat template, chat_template: {% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}, example_format: 'You are a helpful assistant
<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>'
main: server is listening on http://0.0.0.0:8080 - starting the main loop
srv update_slots: all slots are idle
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 512, n_keep = 0, n_prompt_tokens = 9
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 9, n_tokens = 9, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 9, n_tokens = 9
slot release: id 0 | task 0 | stop processing: n_past = 23, truncated = 0
slot print_timing: id 0 | task 0 |
prompt eval time = 264.49 ms / 9 tokens ( 29.39 ms per token, 34.03 tokens per second)
eval time = 2571.52 ms / 15 tokens ( 171.43 ms per token, **5.83 tokens per second**)
total time = 2836.01 ms / 24 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /completion 192.168.1.10 200
^Csrv operator(): operator(): cleaning up before exit...
terminate called without an active exception
Aborted
./build/bin/llama-server -m /data4/qwen2.5-14b-deep-q4_k.gguf -fa -c 512 --temp 0.6 --top-p 0.95 -s 3047 -ngl 160 --host 0.0.0.0
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
Device 0: NVIDIA GeForce GTX 1080 Ti, compute capability 6.1, VMM: yes
build: 0 (unknown) with cc (Debian 12.2.0-14) 12.2.0 for x86_64-linux-gnu
system info: n_threads = 24, n_threads_batch = 24, total_threads = 48
system_info: n_threads = 24 (n_threads_batch = 24) / 48 | CUDA : ARCHS = 610 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 |
main: HTTP server is listening, hostname: 0.0.0.0, port: 8080, http threads: 47
main: loading model
srv load_model: loading model '/data4/qwen2.5-14b-deep-q4_k.gguf'
llama_model_load_from_file_impl: using device CUDA0 (NVIDIA GeForce GTX 1080 Ti) - 11025 MiB free
llama_model_loader: loaded meta data with 25 key-value pairs and 579 tensors from /data4/qwen2.5-14b-deep-q4_k.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qw14
llama_model_loader: - kv 3: general.size_label str = 15B
llama_model_loader: - kv 4: qwen2.block_count u32 = 48
llama_model_loader: - kv 5: qwen2.context_length u32 = 131072
llama_model_loader: - kv 6: qwen2.embedding_length u32 = 5120
llama_model_loader: - kv 7: qwen2.feed_forward_length u32 = 13824
llama_model_loader: - kv 8: qwen2.attention.head_count u32 = 40
llama_model_loader: - kv 9: qwen2.attention.head_count_kv u32 = 8
llama_model_loader: - kv 10: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 11: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 12: general.file_type u32 = 15
llama_model_loader: - kv 13: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 14: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 15: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 16: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 17: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 18: tokenizer.ggml.bos_token_id u32 = 151646
llama_model_loader: - kv 19: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 20: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 21: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 22: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 23: tokenizer.chat_template str = {% if not add_generation_prompt is de...
llama_model_loader: - kv 24: general.quantization_version u32 = 2
llama_model_loader: - type f32: 241 tensors
llama_model_loader: - type q4_K: 289 tensors
llama_model_loader: - type q6_K: 49 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 8.37 GiB (4.87 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 22
load: token to piece cache size = 0.9310 MB
print_info: arch = qwen2
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 5120
print_info: n_layer = 48
print_info: n_head = 40
print_info: n_head_kv = 8
print_info: n_rot = 128
print_info: n_swa = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = 5
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: n_ff = 13824
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 0
print_info: ssm_d_inner = 0
print_info: ssm_d_state = 0
print_info: ssm_dt_rank = 0
print_info: ssm_dt_b_c_rms = 0
print_info: model type = 14B
print_info: model params = 14.77 B
print_info: general.name = Qw14
print_info: vocab type = BPE
print_info: n_vocab = 152064
print_info: n_merges = 151387
print_info: BOS token = 151646 '<|begin▁of▁sentence|>'
print_info: EOS token = 151643 '<|end▁of▁sentence|>'
print_info: EOT token = 151643 '<|end▁of▁sentence|>'
print_info: PAD token = 151643 '<|end▁of▁sentence|>'
print_info: LF token = 198 'Ċ'
print_info: FIM PRE token = 151659 '<|fim_prefix|>'
print_info: FIM SUF token = 151661 '<|fim_suffix|>'
print_info: FIM MID token = 151660 '<|fim_middle|>'
print_info: FIM PAD token = 151662 '<|fim_pad|>'
print_info: FIM REP token = 151663 '<|repo_name|>'
print_info: FIM SEP token = 151664 '<|file_sep|>'
print_info: EOG token = 151643 '<|end▁of▁sentence|>'
print_info: EOG token = 151662 '<|fim_pad|>'
print_info: EOG token = 151663 '<|repo_name|>'
print_info: EOG token = 151664 '<|file_sep|>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: offloading 48 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 49/49 layers to GPU
load_tensors: CUDA0 model buffer size = 8148.38 MiB
load_tensors: CPU_Mapped model buffer size = 417.66 MiB
..........................................................................................
llama_init_from_model: n_seq_max = 1
llama_init_from_model: n_ctx = 512
llama_init_from_model: n_ctx_per_seq = 512
llama_init_from_model: n_batch = 512
llama_init_from_model: n_ubatch = 512
llama_init_from_model: flash_attn = 1
llama_init_from_model: freq_base = 1000000.0
llama_init_from_model: freq_scale = 1
llama_init_from_model: n_ctx_per_seq (512) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
llama_kv_cache_init: kv_size = 512, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 48, can_shift = 1
llama_kv_cache_init: CUDA0 KV buffer size = 96.00 MiB
llama_init_from_model: KV self size = 96.00 MiB, K (f16): 48.00 MiB, V (f16): 48.00 MiB
llama_init_from_model: CUDA_Host output buffer size = 0.58 MiB
llama_init_from_model: CUDA0 compute buffer size = 307.00 MiB
llama_init_from_model: CUDA_Host compute buffer size = 11.01 MiB
llama_init_from_model: graph nodes = 1495
llama_init_from_model: graph splits = 2
common_init_from_params: setting dry_penalty_last_n to ctx_size = 512
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 512
main: model loaded
main: chat template, chat_template: {% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, is_output_first=true, system_prompt='') %}{%- for message in messages %}{%- if message['role'] == 'system' %}{% set ns.system_prompt = message['content'] %}{%- endif %}{%- endfor %}{{bos_token}}{{ns.system_prompt}}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is none %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls']%}{%- if not ns.is_first %}{{'<|Assistant|><|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{%- set ns.is_first = true -%}{%- else %}{{'\n' + '<|tool▁call▁begin|>' + tool['type'] + '<|tool▁sep|>' + tool['function']['name'] + '\n' + '' + '\n' + tool['function']['arguments'] + '\n' + '' + '<|tool▁call▁end|>'}}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- endfor %}{%- endif %}{%- if message['role'] == 'assistant' and message['content'] is not none %}{%- if ns.is_tool %}{{'<|tool▁outputs▁end|>' + message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{% set content = message['content'] %}{% if '</think>' in content %}{% set content = content.split('</think>')[-1] %}{% endif %}{{'<|Assistant|>' + content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_tool = true -%}{%- if ns.is_output_first %}{{'<|tool▁outputs▁begin|><|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- set ns.is_output_first = false %}{%- else %}{{'\n<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endif %}{%- endfor -%}{% if ns.is_tool %}{{'<|tool▁outputs▁end|>'}}{% endif %}{% if add_generation_prompt and not ns.is_tool %}{{'<|Assistant|>'}}{% endif %}, example_format: 'You are a helpful assistant
<|User|>Hello<|Assistant|>Hi there<|end▁of▁sentence|><|User|>How are you?<|Assistant|>'
main: server is listening on http://0.0.0.0:8080 - starting the main loop
srv update_slots: all slots are idle
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 512, n_keep = 0, n_prompt_tokens = 9
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 9, n_tokens = 9, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 9, n_tokens = 9
slot release: id 0 | task 0 | stop processing: n_past = 23, truncated = 0
slot print_timing: id 0 | task 0 |
prompt eval time = 78.55 ms / 9 tokens ( 8.73 ms per token, 114.58 tokens per second)
eval time = 579.88 ms / 15 tokens ( 38.66 ms per token, **25.87 tokens per second**)
total time = 658.43 ms / 24 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /completion 192.168.1.10 200
^Cterminate called without an active exception
srv operator(): operator(): cleaning up before exit...
Aborted