-
Notifications
You must be signed in to change notification settings - Fork 10.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merge qwen to llama cpp #4281
Merge qwen to llama cpp #4281
Conversation
Thank you! I've just finished downloading the models and will now test this PR |
Any ideas how to fix this? $ ▶ python3 convert-hf-to-gguf.py models/qwen-1.8b --outfile models/qwen-1.8b/ggml-model-f16.gguf --outtype f16
Loading model: qwen-1.8b
gguf: This GGUF file is for Little Endian only
Set model parameters
Set model tokenizer
Traceback (most recent call last):
File "/Users/ggerganov/development/github/llama.cpp/convert-hf-to-gguf.py", line 1020, in <module>
model_instance.set_vocab()
File "/Users/ggerganov/development/github/llama.cpp/convert-hf-to-gguf.py", line 871, in set_vocab
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/transformers/models/auto/tokenization_auto.py", line 751, in from_pretrained
tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/transformers/dynamic_module_utils.py", line 499, in get_class_from_dynamic_module
return get_class_in_module(class_name, final_module.replace(".py", ""))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/lib/python3.11/site-packages/transformers/dynamic_module_utils.py", line 199, in get_class_in_module
module = importlib.import_module(module_path)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/opt/homebrew/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/importlib/__init__.py", line 126, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "<frozen importlib._bootstrap>", line 1204, in _gcd_import
File "<frozen importlib._bootstrap>", line 1176, in _find_and_load
File "<frozen importlib._bootstrap>", line 1126, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed
File "<frozen importlib._bootstrap>", line 1204, in _gcd_import
File "<frozen importlib._bootstrap>", line 1176, in _find_and_load
File "<frozen importlib._bootstrap>", line 1126, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 241, in _call_with_frames_removed
File "<frozen importlib._bootstrap>", line 1204, in _gcd_import
File "<frozen importlib._bootstrap>", line 1176, in _find_and_load
File "<frozen importlib._bootstrap>", line 1140, in _find_and_load_unlocked
ModuleNotFoundError: No module named 'transformers_modules.qwen-1' I downloaded the Qwen 1.8B model from here: https://huggingface.co/Qwen/Qwen-1_8B Edit: Qwen 72B is converting successfully |
The problem is perhaps the model directory name, which should not contain "_" |
Try to load 14B Q8_0 to GPU, failed. river@drfxi:~/LLM/llama.cpp$ ./build/bin/main -m ../Qwen-14B-Chat/ggml-Q8_0.gguf -f prompts/chat-with-baichuan.txt -i --color -ngl 999
Log start
main: build = 1578 (60d8085)
main: built with AMD clang version 17.0.0 (https://github.com/RadeonOpenCompute/llvm-project roc-5.7.0 23352 d1e13c532a947d0cbfc94759c00dcf152294aa13) for x86_64-unknown-linux-gnu
main: seed = 1701427105
ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no
ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes
ggml_init_cublas: found 1 ROCm devices:
Device 0: AMD Radeon RX 7800 XT, compute capability 11.0
llama_model_loader: loaded meta data with 19 key-value pairs and 323 tensors from ../Qwen-14B-Chat/ggml-Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: - tensor 0: blk.0.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 7: token_embd.weight q8_0 [ 5120, 152064, 1, 1 ]
llama_model_loader: - tensor 8: blk.0.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 9: blk.1.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 13: blk.1.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 14: blk.1.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 15: blk.1.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 16: blk.1.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 17: blk.2.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 18: blk.2.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 19: blk.2.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 20: blk.2.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 21: blk.2.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 22: blk.2.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 23: blk.2.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 24: blk.2.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 25: blk.3.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 26: blk.3.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 27: blk.3.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 28: blk.3.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 29: blk.3.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 30: blk.3.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 31: blk.3.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 33: blk.4.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 34: blk.4.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 35: blk.4.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 36: blk.4.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 37: blk.4.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 38: blk.4.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 39: blk.4.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 40: blk.4.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 41: blk.5.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 42: blk.5.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 43: blk.5.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 44: blk.5.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 45: blk.5.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 46: blk.5.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 47: blk.5.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 48: blk.5.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 49: blk.6.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 50: blk.6.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 51: blk.6.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 52: blk.6.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 53: blk.6.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 54: blk.6.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 55: blk.6.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 56: blk.6.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 57: blk.7.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 58: blk.10.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 59: blk.7.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 60: blk.7.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 61: blk.7.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 62: blk.7.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 63: blk.7.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 64: blk.7.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 65: blk.7.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 66: blk.8.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 67: blk.8.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 68: blk.8.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 69: blk.8.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 70: blk.8.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 71: blk.8.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 72: blk.8.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 73: blk.8.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 74: blk.9.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 75: blk.9.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 76: blk.9.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 77: blk.9.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 78: blk.9.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 79: blk.9.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 80: blk.9.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 81: blk.9.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 82: blk.10.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 83: blk.10.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 84: blk.10.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 85: blk.10.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 86: blk.10.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 87: blk.10.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 88: blk.10.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 89: blk.11.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 90: blk.11.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 91: blk.11.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 92: blk.11.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 93: blk.11.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 94: blk.11.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 95: blk.11.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 96: blk.11.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 97: blk.12.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 98: blk.12.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 99: blk.12.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 100: blk.12.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 101: blk.12.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 102: blk.12.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 103: blk.12.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 104: blk.12.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 105: blk.13.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 106: blk.13.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 107: blk.13.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 108: blk.13.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 109: blk.13.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 110: blk.13.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 111: blk.13.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 112: blk.13.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 113: blk.14.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 114: blk.14.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 115: blk.14.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 116: blk.14.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 117: blk.14.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 118: blk.14.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 119: blk.14.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 120: blk.14.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 121: blk.15.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 122: blk.15.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 123: blk.15.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 124: blk.15.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 125: blk.15.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 126: blk.15.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 127: blk.15.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 128: blk.15.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 129: blk.16.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 130: blk.16.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 131: blk.16.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 132: blk.16.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 133: blk.16.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 134: blk.16.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 135: blk.16.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 136: blk.16.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 137: blk.17.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 138: blk.17.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 139: blk.17.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 140: blk.17.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 141: blk.17.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 142: blk.17.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 143: blk.17.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 144: blk.17.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 145: blk.18.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 146: blk.18.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 147: blk.18.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 148: blk.18.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 149: blk.18.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 150: blk.18.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 151: blk.18.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 152: blk.18.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 153: blk.19.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 154: blk.19.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 155: blk.19.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 156: blk.19.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 157: blk.19.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 158: blk.19.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 159: blk.19.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 160: blk.19.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 161: blk.20.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 162: blk.20.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 163: blk.20.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 164: blk.20.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 165: blk.20.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 166: blk.20.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 167: blk.20.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 168: blk.20.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 169: blk.21.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 170: blk.21.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 171: blk.21.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 172: blk.21.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 173: blk.21.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 174: blk.21.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 175: blk.21.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 176: blk.21.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 177: blk.22.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 178: blk.22.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 179: blk.22.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 180: blk.22.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 181: blk.22.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 182: blk.22.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 183: blk.22.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 184: blk.22.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 185: blk.23.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 186: blk.23.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 187: blk.23.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 188: blk.23.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 189: blk.23.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 190: blk.23.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 191: blk.23.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 192: blk.23.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 193: blk.24.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 194: blk.24.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 195: blk.24.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 196: blk.24.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 197: blk.24.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 198: blk.24.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 199: blk.24.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 200: blk.24.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 201: blk.25.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 202: blk.25.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 203: blk.25.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 204: blk.25.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 205: blk.25.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 206: blk.25.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 207: blk.25.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 208: blk.25.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 209: blk.26.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 210: blk.26.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 211: blk.26.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 212: blk.26.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 213: blk.26.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 214: blk.26.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 215: blk.26.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 216: blk.26.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 217: blk.27.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 218: blk.27.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 219: blk.27.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 220: blk.27.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 221: blk.27.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 222: blk.27.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 223: blk.27.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 224: blk.27.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 225: blk.28.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 226: blk.28.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 227: blk.28.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 228: blk.28.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 229: blk.28.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 230: blk.28.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 231: blk.28.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 232: blk.28.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 233: blk.29.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 234: blk.29.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 235: blk.29.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 236: blk.29.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 237: blk.29.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 238: blk.29.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 239: blk.29.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 240: blk.29.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 241: blk.30.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 242: blk.30.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 243: blk.30.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 244: blk.30.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 245: blk.30.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 246: blk.30.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 247: blk.30.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 248: blk.30.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 249: blk.31.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 250: blk.31.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 251: blk.31.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 252: blk.31.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 253: blk.31.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 254: blk.31.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 255: blk.31.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 256: blk.31.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 257: blk.32.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 258: blk.32.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 259: blk.32.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 260: blk.32.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 261: blk.32.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 262: blk.32.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 263: blk.32.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 264: blk.32.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 265: blk.33.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 266: blk.33.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 267: blk.33.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 268: blk.33.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 269: blk.33.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 270: blk.33.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 271: blk.33.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 272: blk.33.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 273: blk.34.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 274: blk.34.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 275: blk.34.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 276: blk.34.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 277: blk.34.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 278: blk.34.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 279: blk.34.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 280: blk.34.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 281: blk.35.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 282: blk.35.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 283: blk.35.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 284: blk.35.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 285: blk.35.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 286: blk.35.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 287: blk.35.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 288: blk.35.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 289: blk.36.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 290: blk.36.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 291: blk.36.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 292: blk.36.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 293: blk.36.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 294: blk.36.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 295: blk.36.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 296: blk.36.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 297: blk.37.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 298: blk.37.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 299: blk.37.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 300: blk.37.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 301: blk.37.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 302: blk.37.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 303: blk.37.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 304: blk.37.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 305: blk.38.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 306: blk.38.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 307: blk.38.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 308: blk.38.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 309: blk.38.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 310: blk.38.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 311: blk.38.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 312: blk.38.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 313: blk.39.attn_qkv.bias f32 [ 15360, 1, 1, 1 ]
llama_model_loader: - tensor 314: blk.39.attn_qkv.weight q8_0 [ 5120, 15360, 1, 1 ]
llama_model_loader: - tensor 315: blk.39.attn_output.weight q8_0 [ 5120, 5120, 1, 1 ]
llama_model_loader: - tensor 316: blk.39.attn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 317: blk.39.ffn_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 318: blk.39.ffn_down.weight q8_0 [ 13696, 5120, 1, 1 ]
llama_model_loader: - tensor 319: blk.39.ffn_up.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 320: blk.39.ffn_gate.weight q8_0 [ 5120, 13696, 1, 1 ]
llama_model_loader: - tensor 321: output_norm.weight f32 [ 5120, 1, 1, 1 ]
llama_model_loader: - tensor 322: output.weight q8_0 [ 5120, 152064, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str = qwen
llama_model_loader: - kv 1: general.name str = Qwen
llama_model_loader: - kv 2: qwen.context_length u32 = 8192
llama_model_loader: - kv 3: qwen.block_count u32 = 40
llama_model_loader: - kv 4: qwen.embedding_length u32 = 5120
llama_model_loader: - kv 5: qwen.feed_forward_length u32 = 27392
llama_model_loader: - kv 6: qwen.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 7: qwen.rope.dimension_count u32 = 128
llama_model_loader: - kv 8: qwen.attention.head_count u32 = 40
llama_model_loader: - kv 9: qwen.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 10: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 11: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 12: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 13: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 14: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 15: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 16: tokenizer.ggml.unknown_token_id u32 = 151643
llama_model_loader: - kv 17: general.quantization_version u32 = 2
llama_model_loader: - kv 18: general.file_type u32 = 7
llama_model_loader: - type f32: 121 tensors
llama_model_loader: - type q8_0: 202 tensors
llm_load_vocab: special tokens definition check successful ( 421/152064 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 152064
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 5120
llm_load_print_meta: n_head = 40
llm_load_print_meta: n_head_kv = 40
llm_load_print_meta: n_layer = 40
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 27392
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = 13B
llm_load_print_meta: model ftype = mostly Q8_0
llm_load_print_meta: model params = 14.17 B
llm_load_print_meta: model size = 14.02 GiB (8.50 BPW)
llm_load_print_meta: general.name = Qwen
llm_load_print_meta: BOS token = 151643 '[PAD151643]'
llm_load_print_meta: EOS token = 151643 '[PAD151643]'
llm_load_print_meta: UNK token = 151643 '[PAD151643]'
llm_load_print_meta: LF token = 148848 'ÄĬ'
llm_load_tensors: ggml ctx size = 0.12 MiB
llm_load_tensors: using ROCm for GPU acceleration
error loading model: create_tensor: 1-dimensional tensor 'blk.0.attn_qkv.bias' cannot be split on the GPU
llama_load_model_from_file: failed to load model
llama_init_from_gpt_params: error: failed to load model '../Qwen-14B-Chat/ggml-Q8_0.gguf'
main: error: unable to load model |
Qwen 72B F16 seems to be working fine: make -j && ./main -m ./models/qwen-72b-fast/ggml-model-f16.gguf -p "I believe the meaning of life is" -ngl 1 -s 1 -n 64 --verbose-prompt output on M2 Ultra
Edit: Unfortunately, none of the quantized 72B seems to work, even on the CPU. make -j && ./main -m ./models/qwen-72b-fast/ggml-model-q8_0.gguf -p "I believe the meaning of life is" -ngl 0 -s 1 -n 64 --verbose-prompt
system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 |
main: prompt: 'I believe the meaning of life is'
main: number of tokens in prompt = 7
40 -> 'I'
4411 -> ' believe'
279 -> ' the'
7290 -> ' meaning'
315 -> ' of'
2272 -> ' life'
374 -> ' is'
sampling:
repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
generate: n_ctx = 512, n_batch = 512, n_predict = 64, n_keep = 0
I believe the meaning of life is⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑ No asserts in Debug. Weird 🤔 Edit 2: fixed - see below |
Tried LLaMAfied Qwen 72B, failed on all quantized, but works well with F16. |
Yes, it's also exactly the same with Qwen 72B Chat - F16 works and none of the quantum ones work. I checked that LLaMA v2 70B works with quantization - it is of similar size. |
If the
Edit: see next comment |
position embedding failing, perhaps? |
Wow, we have a bug in the quantization code - integer overflow when using multiple threads: Lines 7657 to 7671 in 8d6d9f0
Some of these Will push a fix shortly Fix: #4284 |
We just need to fix Qwen-1.8B conversion now and we can merge. Any ideas what this error means? |
From the log, I can find some chat template information, but not all. I also searched on Hugging Face and GitHub, but I couldn't find the complete chat template. Could you please provide the chat template?
|
Just uploaded the q4_0 gguf to hf: https://huggingface.co/aisensiy/Qwen-72B-Chat-GGUF |
@ggerganov thank you so much. I have a very bad fever since Friday night. |
See make_context link. |
I got it, thank you very much. |
Unable to support Qwen-VL-Chat.
|
I just digged a bit into Qwen-VL I was able to convert the visual encoder to gguf (a fine tuned ViT Big 2B) with a small hack but this needs an entire (small) new architecture to run. |
So, can the qwen1.8B be successfully converted now |
@simonJJJ please also update the "Supported models" list in the llama.cpp README on the first page. |
will do it |
commit 53b5ae02cb1b533b78302422951bcfdeca6e2738 Author: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com> Date: Tue Dec 12 12:08:29 2023 -0600 mixtral fan service commit 168b1d74e26d0321e2e89358303b6c33e8d7d33e Merge: f13295b de15d4a6 Author: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com> Date: Tue Dec 12 12:00:52 2023 -0600 Merge branch 'kcpp-rocm-mixtral2' into main2 commit de15d4a632939a685ec12fa17355298542facf15 Merge: 74acc54 ea4402b Author: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com> Date: Tue Dec 12 11:45:19 2023 -0600 Merge branch 'mixtral' into kcpp-rocm-mixtral commit ea4402b Author: Georgi Gerganov <ggerganov@gmail.com> Date: Tue Dec 12 17:03:38 2023 +0200 test-backend-ops : add one more sum_rows test commit a51bc0c Author: Georgi Gerganov <ggerganov@gmail.com> Date: Tue Dec 12 15:55:42 2023 +0200 metal : fix binary ops for ne10 % 4 != 0 commit 08eb991 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Tue Dec 12 14:14:15 2023 +0200 metal : add cpy f16 -> f32 kernel commit a742d9f Author: slaren <slarengh@gmail.com> Date: Tue Dec 12 12:46:33 2023 +0100 gguf-py : bump version commit 6a419f4 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Tue Dec 12 13:04:33 2023 +0200 convert : support safetensors format commit 74acc54 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Tue Dec 12 10:53:34 2023 +0800 Revert "Hide hipBLAS (ROCm) if CuBLAS exists - vice versa" This reverts commit 4b854d4. commit f1cbfab Author: slaren <slarengh@gmail.com> Date: Mon Dec 11 20:02:55 2023 +0100 convert : fix style commit 7dc75e3 Author: slaren <slarengh@gmail.com> Date: Mon Dec 11 20:00:28 2023 +0100 convert : use 1e6 rope_freq_base for mixtral commit 296c945 Author: slaren <slarengh@gmail.com> Date: Mon Dec 11 16:53:25 2023 +0100 cuda : fix mul_mat_id with multi gpu commit 33e50f1 Author: slaren <slarengh@gmail.com> Date: Mon Dec 11 12:27:48 2023 +0100 test-backend-ops : disable MOE test with thread sanitizer commit ffda94c Author: slaren <slarengh@gmail.com> Date: Mon Dec 11 12:15:31 2023 +0100 test-backend-ops : simplify and disable slow tests to avoid CI timeout commit 06581f2 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Mon Dec 11 16:54:42 2023 +0800 perf endpoint lets you monitor if the embedded horde worker has issues commit fce971d Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Mon Dec 11 16:17:10 2023 +0800 do not build the clblast noavx2 binary if not on windows commit 8cbaed1 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Mon Dec 11 08:55:16 2023 +0200 llama : fix hard-coded number of experts commit 4b854d4 Author: YellowRoseCx <80486540+YellowRoseCx@users.noreply.github.com> Date: Sun Dec 10 22:49:35 2023 -0600 Hide hipBLAS (ROCm) if CuBLAS exists - vice versa commit b002981 Author: slaren <slarengh@gmail.com> Date: Mon Dec 11 02:43:52 2023 +0100 test-backend-ops : fix dequantize block offset commit f1380d7 Author: slaren <slarengh@gmail.com> Date: Sun Dec 10 22:58:31 2023 +0100 test-backend-ops : add cpy from f32 -> all types test commit 54d254b Author: slaren <slarengh@gmail.com> Date: Sun Dec 10 21:52:11 2023 +0100 test-backend-ops : cleanup, add moe test for batches commit e2cf3b7 Author: henk717 <henk@henk.tech> Date: Sun Dec 10 14:30:17 2023 +0100 koboldcpp.sh - The Mamba Multitool (LostRuins#554) * .sh script V1 * koboldcpp.sh polish * koboldcpp.sh dist generator * Include html's in dist * RWKV in Linux Dist * Lower dependency requirements * Eliminate wget dependency * More distinct binary name I know its technically amd64, but I don't want to cause confusion among nvidia users. * Use System OpenCL Unsure how this will behave in the pyinstaller build, but pocl ended up CPU only. With a bit of luck the pyinstaller uses the one from the actual system if compiled in a system without opencl, while conda now includes it for that specific system. * Add cblas dependency Missing this causes compile failures on some system's * ICD workaround Ideally we find a better solution, but conda forces ICD and needs this for the successful compile. However, pyinstaller then embeds the ICD causing it to be limited to the system it was compiled for. By temporarily removing the ICD pyinstaller can't find it and everything remains functional. Ideally we do this on a pyinstaller level, but I could not find any good options to do so yet. --------- Co-authored-by: root <root@DESKTOP-DQ1QRAG> commit 54ba263 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 10 15:27:41 2023 +0200 test-backend-ops : make experts more evenly probable (test_moe) commit b0b83dd Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 10 14:30:38 2023 +0200 metal : fix ggml_mul_mat_id for F32 commit 65923a8 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 10 14:17:46 2023 +0200 convert : determine n_ctx correctly commit 8614aa7 Author: slaren <slarengh@gmail.com> Date: Sun Dec 10 13:12:11 2023 +0100 cuda : fix get_rows when ncols is odd commit cefebb3 Author: slaren <slarengh@gmail.com> Date: Sun Dec 10 13:11:39 2023 +0100 test-backend-ops : add moe test commit e640cbe Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 10 13:57:54 2023 +0200 llama : add n_expert and n_expert_used to hparams + change quants commit d1259b7 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 10 13:00:13 2023 +0200 llama : do not quantize expert gating tensors commit 6cfb31f Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 10 10:59:13 2023 +0200 metal : add indirect mat-vec kernels for all quantization types commit 016f9bb Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 10 09:38:21 2023 +0200 metal : fix ggml_get_rows to work with non-cont src1 commit 0710b0f Author: slaren <slarengh@gmail.com> Date: Sat Dec 9 23:29:47 2023 +0100 llama : offload missing ffn_moe_silu commit 62b95f9 Author: slaren <slarengh@gmail.com> Date: Sat Dec 9 22:39:34 2023 +0100 cuda : support non-contiguous src1 in get_rows commit 2e4db48 Author: slaren <slarengh@gmail.com> Date: Sat Dec 9 22:38:22 2023 +0100 ggml : update get_rows f16 and q commit ac3f7d8 Author: slaren <slarengh@gmail.com> Date: Sat Dec 9 19:19:03 2023 +0100 ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D commit 8c5b66e Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 15:30:34 2023 +0200 metal : reduce the kernel launches for ggml_mul_mat_id commit 7e2006b Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 14:24:58 2023 +0200 metal : add/mul/div use general kernel when src1 not cont commit 06dfde3 Author: slaren <slarengh@gmail.com> Date: Sat Dec 9 13:21:09 2023 +0100 llama : add basic support for offloading moe with CUDA commit 2cbcba8 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 14:18:42 2023 +0200 metal : add more general support for ggml_get_rows + tests commit 9064b1c Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 14:04:54 2023 +0200 ggml : fix ggml_get_rows to take into account ne02 / ne11 commit ee8fb39 Author: slaren <slarengh@gmail.com> Date: Sat Dec 9 12:42:25 2023 +0100 ggml : add n_as argument to ggml_mul_mat_id commit 7372b62 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 13:18:58 2023 +0200 ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) commit 8b185b7 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 13:01:42 2023 +0200 llama : fix expert weighting in the FFN commit 7ea3695 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 12:45:15 2023 +0200 llama : first working version commit af1a096 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 12:07:39 2023 +0200 llama : fix cur -> cur_expert commit aedfad1 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 11:47:40 2023 +0200 llama : update graph to support MoE commit 861cd67 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 11:19:46 2023 +0200 ggml : sync latest ggml_mul_mat_id commit a3eefe9 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 11:14:03 2023 +0200 llama : model loading commit d38e41e Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 10:59:37 2023 +0200 convert : fix n_ff typo commit dff8cbe Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sat Dec 9 10:51:58 2023 +0200 convert : support Mixtral as LLAMA arch commit 7a69152 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Dec 8 21:06:32 2023 +0800 lowvram var defaults commit 7418bca Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Dec 8 19:20:30 2023 +0800 up ver commit c47bc28 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Dec 8 18:35:45 2023 +0800 slight refactor for noscript ui commit 7469f20 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Dec 8 18:16:14 2023 +0800 use lowvram flag for offload qkv commit ec21fa7 Merge: 930cdfb fe680e3 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Dec 8 17:42:26 2023 +0800 Merge branch 'master' into concedo_experimental # Conflicts: # .github/workflows/build.yml # .gitignore # CMakeLists.txt # Makefile # Package.swift # README.md # ggml-cuda.cu # llama.cpp # llama.h # scripts/sync-ggml.sh # tests/CMakeLists.txt commit 930cdfb Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Dec 8 16:53:30 2023 +0800 updated lite, added patch that links to noscript mode commit fe680e3 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Thu Dec 7 22:26:54 2023 +0200 sync : ggml (new ops, tests, backend, etc.) (ggerganov#4359) * sync : ggml (part 1) * sync : ggml (part 2, CUDA) * sync : ggml (part 3, Metal) * ggml : build fixes ggml-ci * cuda : restore lost changes * cuda : restore lost changes (StableLM rope) * cmake : enable separable compilation for CUDA ggml-ci * ggml-cuda : remove device side dequantize * Revert "cmake : enable separable compilation for CUDA" This reverts commit 09e35d0. * cuda : remove assert for rope * tests : add test-backend-ops * ggml : fix bug in ggml_concat * ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()` * ci : try to fix macOS * ggml-backend : remove backend self-registration * ci : disable Metal for macOS cmake build ggml-ci * metal : fix "supports family" call * metal : fix assert * metal : print resource path ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com> commit bcc0eb4 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Thu Dec 7 13:03:17 2023 +0200 llama : per-layer KV cache + quantum K cache (ggerganov#4309) * per-layer KV * remove unnecessary copies * less code duplication, offload k and v separately * llama : offload KV cache per-layer * llama : offload K shift tensors * llama : offload for rest of the model arches * llama : enable offload debug temporarily * llama : keep the KV related layers on the device * llama : remove mirrors, perform Device -> Host when partial offload * common : add command-line arg to disable KV cache offloading * llama : update session save/load * llama : support quantum K cache (ggerganov#4312) * llama : support quantum K cache (wip) * metal : add F32 -> Q8_0 copy kernel * cuda : add F32 -> Q8_0 copy kernel ggml-ci * cuda : use mmv kernel for quantum cache ops * llama : pass KV cache type through API * llama : fix build ggml-ci * metal : add F32 -> Q4_0 copy kernel * metal : add F32 -> Q4_1 copy kernel * cuda : wip * cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels * llama-bench : support type_k/type_v * metal : use mm kernel only for quantum KV cache * cuda : add comment * llama : remove memory_f16 and kv_f16 flags --------- Co-authored-by: slaren <slarengh@gmail.com> * readme : add API change notice --------- Co-authored-by: slaren <slarengh@gmail.com> commit 81bc921 Author: Hongyu Ouyang <96765450+casavaca@users.noreply.github.com> Date: Thu Dec 7 02:25:22 2023 -0800 train : fix ggerganov#4227 (double free in examples/train-text-from-scratch/train-text-from-scratch.cpp) (ggerganov#4351) On commit b1108 (44c117f) xaedes added ggml_allocr * alloc = NULL; ... (many lines in between) if (alloc) { ggml_allocr_free(alloc); } Which is correct, but it's easy to lose context after many lines in between. On commit b1287 (0e76a899) xaedes made a big change. From here on, alloc is freed eagerly. alloc = ggml_allocr_new(...) ... (short lines of code) ggml_allocr_free(alloc) This happens a few times, but alloc is never set to NULL, and many lines below, we still have if (alloc) { ggml_allocr_free(alloc); } which causes a double-free. commit 05cd6e5 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Wed Dec 6 20:21:59 2023 +0200 server : recognize cache_prompt parameter in OAI API (ggerganov#4347) commit c751152 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Thu Dec 7 00:52:25 2023 +0800 noscript mode is done commit 12002d8 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Wed Dec 6 17:51:08 2023 +0800 very basic noscript mode commit caa9249 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Wed Dec 6 10:41:03 2023 +0200 common : fix compile warning commit da5eaef Author: stduhpf <stephduh@live.fr> Date: Wed Dec 6 09:08:17 2023 +0100 speculative : support `--color` (ggerganov#4343) * speculative: add some colors * minor : add braces --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> commit 5f6e0c0 Author: Marcus Dunn <51931484+MarcusDunn@users.noreply.github.com> Date: Tue Dec 5 10:55:12 2023 -1000 grammar : pre-computed pieces + reserve mem + less string copies (ggerganov#4330) * reserve space for codepoints * improvement for the appended 0 * used precomputed token text for grammar sample * reserve canidates_decoded * reserve canidates_grammar * remove candidates_decoded * Revert "remove candidates_decoded" This reverts commit 3773328. * changed decode_utf8 to take src by ref commit 5aa365d Author: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Date: Tue Dec 5 10:19:18 2023 -0700 llama : allow overriding GGUF metadata when loading model (ggerganov#4092) * feat: Allow overriding GGUF metadata when loading model * Fix the one time GCC is stricter than clang about something * Step1 * Refactor... basically everything! * Nuke obsolete GetArrayLen struct * simplify std::string specialization * Various cleanups Add informational output when overrides are applied Warn user when an override with the wrong type is specified * Fix broken logic for parsing bool KV overrides Fix issue where overrides didn't apply when key missing in GGUF metadata Resolve merge changes * llama : rearrange model params * Update new GET_KEY call Add note that metadata KV overrides aren't reflected in initial metadata KV info dump --------- Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> commit b6f952f Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Tue Dec 5 21:08:10 2023 +0800 improved exit logic commit 52c8bc3 Author: MaggotHATE <clay1326@gmail.com> Date: Tue Dec 5 15:05:51 2023 +0500 sampling : custom samplers order (ggerganov#4285) * Samplers sequence order w parameter * Cleaned commented code * Fixed formatting * Rewrote with unordered_map * Revert and rewrite, too many problems and safeguards would be needed * Fixed code style * Code style fixes according to review * More readable samplers input string, fixed help * Style fix in sampler_queue * Formatting fixes * Fixing whitespaces commit e4b76bb Author: kchro3 <62481661+kchro3@users.noreply.github.com> Date: Mon Dec 4 23:29:46 2023 -0800 swift : revert compiler checks for swift package (ggerganov#4332) commit 23b5e12 Author: Daniel Bevenius <daniel.bevenius@gmail.com> Date: Mon Dec 4 17:04:21 2023 +0100 simple : update error message for KV cache check (ggerganov#4324) This commit updates the error message that is printed when the KV cache is not big enough to hold all the prompt and generated tokens. Specifically it removes the reference to n_parallel and replaces it with n_len. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> commit d208995 Author: Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com> Date: Tue Dec 5 01:03:49 2023 +0900 swift : fix concatenation method to avoid invalid UTF8 stringfication (ggerganov#4325) commit 5c9f90c Author: Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com> Date: Mon Dec 4 22:43:45 2023 +0900 swift : fix prompt tokenization logic (ggerganov#4321) commit a5a5839 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Mon Dec 4 21:10:42 2023 +0800 handle accidentally selecting a kcpps file as model instead commit 4fa44e8 Author: Ikko Eltociear Ashimine <eltociear@gmail.com> Date: Mon Dec 4 16:57:35 2023 +0900 grammar-parser : fix typo (ggerganov#4318) preceeding -> preceding commit 8602f5a Merge: ac36aee fbbc428 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Sun Dec 3 22:00:14 2023 +0800 Merge branch 'master' into concedo_experimental commit fbbc428 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 3 15:56:35 2023 +0200 ggml : reuse ggml_get_n_tasks() in ggml_graph_plan() (ggerganov#4308) * ggml : fix soft max out-of-bounds access ggml-ci * ggml : reuse ggml_get_n_tasks() in ggml_graph_plan() ggml-ci commit ac36aee Merge: 48544cd 33e171d Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Sun Dec 3 21:56:29 2023 +0800 Merge branch 'master' into concedo_experimental # Conflicts: # CMakeLists.txt # Makefile commit adf3de4 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 3 15:56:22 2023 +0200 ggml : fix soft max out-of-bounds access (ggerganov#4307) ggml-ci commit 48544cd Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Sun Dec 3 21:46:50 2023 +0800 Revert "Revert "ggml : add ggml_soft_max_ext (ggerganov#4256)"" This reverts commit a8e66ef. commit 33e171d Author: Ed Lee <edilee@mozilla.com> Date: Sun Dec 3 01:10:43 2023 -0800 server : fix OpenAI API `stop` field to be optional (ggerganov#4299) (cherry picked from commit Mozilla-Ocho/llamafile@e8c92bc) commit 6949b50 Author: Rickard Edén <rickardeden@gmail.com> Date: Sun Dec 3 10:03:25 2023 +0100 py : add grammar to oai like api (ggerganov#4294) commit d7b800b Author: Georgi Gerganov <ggerganov@gmail.com> Date: Sun Dec 3 10:58:16 2023 +0200 llama : pad KV cache size (ggerganov#4280) * llama : pad KV cache size to 32 * metal : try to improve batched decoding commit 6570a20 Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Sun Dec 3 15:44:53 2023 +0800 token count includes ids commit 5a7d312 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Fri Dec 1 20:39:12 2023 +0200 llama : avoid using "optional" keyword (ggerganov#4283) commit d5a1cbd Author: Georgi Gerganov <ggerganov@gmail.com> Date: Fri Dec 1 20:35:03 2023 +0200 llama : support optional tensors (ggerganov#4283) commit b220222 Author: Miwa / Ensan <63481257+ensan-hcl@users.noreply.github.com> Date: Sat Dec 2 03:19:45 2023 +0900 swift : fix token_to_piece implementation (ggerganov#4278) * Fix token_to_piece implementation in Swift * Fix errors commit 511f52c Author: Jared Van Bortel <jared@nomic.ai> Date: Fri Dec 1 13:18:35 2023 -0500 build : enable libstdc++ assertions for debug builds (ggerganov#4275) commit 03562f3 Author: CausalLM <148736309+CausalLM@users.noreply.github.com> Date: Sat Dec 2 02:17:06 2023 +0800 llama : support attention bias on LLaMA architecture (ggerganov#4283) * Support attention_bias on LLaMA architecture QKVO bias, should fix InternLM (ggerganov#3133) and works for LLaMAfied Qwen models (ggerganov#3743 (comment)). * check existence of qkvo bias while loading llama models Tested on LLaMA2, CUDA and CPU. * Update llama.cpp commit 37c746d Author: Shijie <821898965@qq.com> Date: Sat Dec 2 02:16:31 2023 +0800 llama : add Qwen support (ggerganov#4281) * enable qwen to llama.cpp * llama : do not GPU split bias tensors --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> commit 880f579 Author: Georgi Gerganov <ggerganov@gmail.com> Date: Fri Dec 1 18:42:11 2023 +0200 llama : fix integer overflow during quantization (ggerganov#4284) happens with multi-threaded quantization of Qwen-72B ggml-ci
Yes, it can run. But the generating result seems not so good. I tried 14B gguf, but get so many reptitions , even likes '/n/n/n‘.........for tens time. So there is sth must be corrected or improved. Thanks. Below is an example result: 您好!很高兴能与您聊天。您有什么问题需要我回答吗? |
If I add suffix like |
Same problem. |
I actually have a similar problem. I have \n set to return control, but the model will generate !!! constantly, even when not appropriate. It's weird because all three have the same logit value, and the correct punctuation usually follows.
It's always in a set of three. I assumed it was something I was doing wrong but now I'm not entirely sure. |
python3 convert-hf-to-gguf.py --outfile qwen14b-chat-f16.gguf --outtype f16 ../../LLM/Qwen-14B-Chat/ |
Qwen-14B-Chat this model come from modelscope platfrom |
* enable qwen to llama.cpp * llama : do not GPU split bias tensors --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
It can run without errors but I think something is wrong with the chat completion. It always outputs a lot of "\n" no matter how I change the history messages.
For comparison, this is the result of completion.
|
llama : restore prefix space in llama tokenizer (ggerganov#4081) gguf : fix potential infinite loops while parsing (ggerganov#4100) Co-authored-by: Bernhard Gstrein <gstrein@cs.uni-freiburg.de> Respect tokenizer.ggml.add_bos_token value when tokenizing (ggerganov#4040) * gguf-py: gguf-dump: Respect --no-tensor flag in JSON mode. * Respect add_bos_token GGUF metadata value * gguf-py: Try to fix SpecialVocab giving up too easily for the Nth time llama : fix data units (ggerganov#4101) * llama : fix data units ggml-ci * Revert "llama : fix data units" This reverts commit f5feac8. * llama : disambiguate data units ggml-ci cuda : get_row_rounding F32 (ggerganov#4095) * Fix ggerganov#4017 * Update ggml-cuda.cu Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update ggml-cuda.cu Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> --------- Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> finetune : zero the loraB initial vectors (ggerganov#4082) * finetune : zero the loraB initial vectors Without this, the first iteration is starting out far from the base model, instead of exactly on it. Zeroing loraB is what the paper recommends. loralib also zeroes at least one of the init vector pairs (though it departs from the paper in using a different distribution for the other vector, in some cases). * tabs to spaces * Use ggml_set_zero instead of adding a new function finetune : speed-up ggml_compute_forward_out_prod_f32 via BLAS (ggerganov#4079) * Remove logically superfluous assertions and order by dimension * Use cblas_sgemm() to implement ggml_compute_forward_out_prod() * Remove ggml_compute_forward_out_prod_use_blas(), fix compiling errors on cmake/zig, remove trailing whitespace * Add openBLAS support for sgemm() in compute_forward_out_prod() llama : add functions to get the model's metadata (ggerganov#4013) * llama : add functions to get the model's metadata * format -> std::to_string * better documentation train : move number of gpu layers argument parsing to common/train.cpp (ggerganov#4074) - introduces help entry for the argument - cuts '--gpu-layers' form in order to simplify usage and documentation. Signed-off-by: Jiri Podivin <jpodivin@gmail.com> Co-authored-by: Jiri Podivin <jpodivin@redhat.com> py : remove superfluous import statements (ggerganov#4076) Signed-off-by: Jiri Podivin <jpodivin@gmail.com> Co-authored-by: Jiri Podivin <jpodivin@redhat.com> llava : fix compilation warning that fread return value is not used (ggerganov#4069) common : improve yaml log escaping (ggerganov#4080) * logging: improve escaping in yaml output * logging: include review feedback py : Falcon HF compatibility (ggerganov#4104) Falcon HF compatibility convert : use 'model' value if it exists. This allows karpathy/tinyllamas to load (ggerganov#4089) Co-authored-by: Don Mahurin <@> examples : add tokenize (ggerganov#4039) tokenize : fix trailing whitespace build : support ppc64le build for make and CMake (ggerganov#3963) * build: support ppc64le build for make and CMake * build: keep __POWER9_VECTOR__ ifdef and extend with __powerpc64__ Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> llama : increase max nodes (ggerganov#4115) Clean up ggml-cuda.cu warnings when compiling with clang (for ROCM) (ggerganov#4124) * ggml-cuda.cu: Clean up warnings when compiling with clang * ggml-cuda.cu: Move static items into anonymous namespace * ggml-cuda.cu: Fix use of namespace start macro * Revert "ggml-cuda.cu: Fix use of namespace start macro" This reverts commit 26c1149. * Revert "ggml-cuda.cu: Move static items into anonymous namespace" This reverts commit e29757e. scripts : Remove missed baichuan convert script (ggerganov#4127) tokenize example: Respect normal add BOS token behavior (ggerganov#4126) Allow building with Makefile gguf-py : export chat templates (ggerganov#4125) * gguf-py : export chat templates * llama.cpp : escape new lines in gguf kv info prints * gguf-py : bump version * gguf-py : check chat_template type * gguf-py : initialize chat_template gitignore : tokenize common : comma should be semicolon (ggerganov#4137) server : relay error messages (ggerganov#4131) finetune : add --n-gpu-layers flag info to --help (ggerganov#4128) Revert "finetune : add --n-gpu-layers flag info to --help (ggerganov#4128)" This reverts commit 05e8301. speculative : fix prompt tokenization in speculative example (ggerganov#4025) * Support special tokens and not adding BOS to prompt in speculative * Adapt to new should_add_bos function * Ensure tgt and dft have same add_bos setting ci : add flake8 to github actions (python linting) (ggerganov#4129) Disabled rules: * E203 Whitespace before ':' - disabled because we often use 'C' Style where values are aligned * E211 Whitespace before '(' (E211) - disabled because we often use 'C' Style where values are aligned * E221 Multiple spaces before operator - disabled because we often use 'C' Style where values are aligned * E225 Missing whitespace around operator - disabled because it's broken so often it seems like a standard * E231 Missing whitespace after ',', ';', or ':' - disabled because we often use 'C' Style where values are aligned * E241 Multiple spaces after ',' - disabled because we often use 'C' Style where values are aligned * E251 Unexpected spaces around keyword / parameter equals - disabled because it's broken so often it seems like a standard * E261 At least two spaces before inline comment - disabled because it's broken so often it seems like a standard * E266 Too many leading '#' for block comment - sometimes used as "section" separator * E501 Line too long - disabled because it's broken so often it seems like a standard * E701 Multiple statements on one line (colon) - broken only in convert.py when defining abstract methods (we can use# noqa instead) * E704 Multiple statements on one line - broken only in convert.py when defining abstract methods (we can use# noqa instead) main : Add ChatML functionality to main example (ggerganov#4046) Co-authored-by: Sebastian Cramond <sebby37@users.noreply.github.com> readme : update ROCm Windows instructions (ggerganov#4122) * Update README.md * Update README.md Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> --------- Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> finetune - update readme to mention llama support only (ggerganov#4148) stablelm : simplify + speedup generation (ggerganov#4153) docs : add llama-star arch idea examples : fix typo in parallel example doc comment (ggerganov#4181) Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> readme : update hot topics llama : KV cache view API + better KV cache management (ggerganov#4170) * llama : keep track of used KV cells + better KV cache management * llama : zero KV cache used upon clear ggml-ci * llama : allow exporting a view of the KV cache (ggerganov#4180) * Allow exporting a view of the KV cache * Allow dumping the sequences per cell in common * Track max contiguous cells value and position as well * Fix max contiguous empty cells index calculation Make dump functions deal with lengths or sequences counts > 10 better * Fix off by one error in dump_kv_cache_view * Add doc comments for KV cache view functions Eliminate cell sequence struct; use llama_seq_id directly Minor cleanups * common : add -dkvc arg for enabling kv cache dumps --------- Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com> Fix incorrect format strings and uninitialized variables. (ggerganov#4133) * Fix incorrect format strings and uninitialized variables. * Address comments * Add the missing include statement readme : use PATH for Windows ROCm (ggerganov#4195) * Update README.md to use PATH for Windows ROCm * Update README.md * Update README.md main.swift : fix eos checking (ggerganov#4197) llama_token_eos(const struct llama_model *) is currently getting struct llama_context type variable context as a parameter. convert : fix tensors using grad in some models (ggerganov#4173) ggml-cuda : support stablelm rope (ggerganov#4156) * ggml-cuda : support stablelm rope * remove unused freq_base kernel parameter * add n_dims parameter to llm_build_k_shift, default to n_rot via overload * llama : fix llm_build_k_shift args --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> llama : set metal log callback correctly (ggerganov#4204) server : OAI API compatibility (ggerganov#4198) * Add openai-compatible POST /v1/chat/completions API endpoint to server example * fix code style * Update server README.md * Improve server README.md * Fix server.cpp code style according to review * server : some style changes * server : indentation * server : enable special tokens during tokenization by default * server : minor code style * server : change random string generator * straightforward /v1/models endpoint --------- Co-authored-by: kir-gadjello <111190790+kir-gadjello@users.noreply.github.com> Co-authored-by: Tobi Lütke <tobi@Tobis-MacBook-Pro.local> readme : update hot topics Update docs for yarn_ext_factor <0.0 as unspecified instead of NaN (ggerganov#4189) llama : grammar `reserve` space in `decode_utf8` (ggerganov#4210) * reserve space for codepoints * improvement for the appended 0 scripts : Use mmap in torch load (ggerganov#4202) * Use mmap in torch load, prefer .bin files when loading * Revert .bin > .safetensors preference metal : fix yarn (ggerganov#4220) get the correct n_orig_ctx in metal lookahead : add example for lookahead decoding (ggerganov#4207) * lookahead : init * lookahead : generate and store n-grams * lookahead : use loop instead recursion to generate n-grams * lookahead : initial working implementation * lookahead : filter repeating n-grams * lookahead : use deterministic init * lookahead : add to Makefile * lookahead : fix a bug in the seq_id of the lookahead tokens * lookahead : add comments --------- Co-authored-by: slaren <slarengh@gmail.com> readme : update hot topics lookahead : support `-n -1` infinite generation ggml : fix -Warray-bounds warning with gcc (ggerganov#4231) examples : iOS example with swift ui (ggerganov#4159) * copy to llama.cpp as subdir * attempt enabling metal, fails * ggml metal compiles! * Update README.md * initial conversion to new format, utf8 errors? * bug fixes, but now has an invalid memory access :( * added O3, now has insufficient memory access * begin sync with master * update to match latest code, new errors * fixed it! * fix for loop conditionals, increase result size * fix current workflow errors * attempt a llama.swiftui workflow * Update .github/workflows/build.yml Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> readme : add Amica to UI list (ggerganov#4230) cmake : fix issue with version info not getting baked into LlamaConfig.cmake (ggerganov#3970) * Split CPP generation from build-info query * Remove blank lines * Add BUILD_SHARED_LIBS option ggml : re-enable BLAS for CPU when src0 != F32 + remove redundant full offload checks in llama.cpp (ggerganov#4240) * ggml : use blas even if src0 is not F32 * llama : use n_threads_batch only when n_tokens >= 32 ggml-ci * llama : revert n_threads_batch logic ggml-ci ggml : restore abort() in GGML_ASSERT (ggerganov#4242) readme : add FreeChat (ggerganov#4248) examples : add readme files py : fix oai proxy (ggerganov#3972) * fix oai proxy fix generation not stoped while bot stop talking in chat mode fix possible `slot_id` not exist response for cors (and pre flight) * oai proxy: workaround for some client (such as Chatbox) * use stop as separator to replace hardcoded `\n` llama : fix typical sampling (ggerganov#4261) Typical sampling was broken because after copying new_candidates into canditates, the "sorted" bool is left at "true", but the new data is no longer sorted according to probability. Patch to set "sorted" to false. Test: Generating with temp=0.0001 (approx. argmax) should generate the same sequence at typical>=1.0 and typical=0.9999 (approx. disabled, but enters the typical sampling codepath). convert.py : fix llama/llama2 conversion due to vocab_size=-1 (ggerganov#4258) llama : fix alignment of general.name in print meta (ggerganov#4254) * llama: fix alignment of general.name in print meta This commit fixes the alignment of the general.name field in the llm_load_print_meta function. Currently the output looks like this: ```console llm_load_print_meta: model ftype = mostly Q4_0 llm_load_print_meta: model params = 13.02 B llm_load_print_meta: model size = 6.86 GiB (4.53 BPW) llm_load_print_meta: general.name = LLaMA v2 ``` And with this commit it looks like this: ```console llm_load_print_meta: model ftype = mostly Q4_0 llm_load_print_meta: model params = 13.02 B llm_load_print_meta: model size = 6.86 GiB (4.53 BPW) llm_load_print_meta: general.name = LLaMA v2 ``` Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> * llama: fix alignment of special tokens Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> --------- Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> readme : fix typo (ggerganov#4253) llama.cpp uses GitHub Actions, not Gitlab Actions. cmake : fix the metal file foder path (ggerganov#4217) batched.swift : update README.md (ggerganov#4214) docs: update how to run docker : add finetune option (ggerganov#4211) readme : fix (ggerganov#4135) * fix: readme * chore: resolve comments * chore: resolve comments main : pass LOG_TEE callback to llama.cpp log (ggerganov#4033) * main : Call llama_log_set to use LOG_TEE * tabs to spaces llava : ShareGPT4V compatibility (vision encoder only loading) (ggerganov#4172) * ShareGPT4 compatibility (vision encoder only loading) Load only a CLIP vision encoder (as supplied by ShareGPT finetunes) Corrects the argument parsing for --img_mean and --img_std (which were previously not parsed but attempted to access) Defines defaults for img_mean and img_std which are equal to the llava 1.5 CLIP encoder, so you do not have to provide them * Update convert-image-encoder-to-gguf.py build : fix build info generation and cleanup Makefile (ggerganov#3920) * cmake : fix joining of REAL_GIT_DIR * fix includes with help from include-what-you-use * make : remove unneeded deps and add test-rope target * fix C includes in C++ source files * Revert "fix includes with help from include-what-you-use" This reverts commit 635e9fa. make : fix Apple clang determination bug (ggerganov#4272) Co-authored-by: Will Findley <findley@gmail.com> server : add single-client multi-prompt support (ggerganov#4232) * * add multiprompt support * * cleanup * * more cleanup * * remove atomicity of id_gen, and change lock_guard to unique_lock on completion requests * * remove all references to mutex_multitasks * Update examples/server/server.cpp Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update examples/server/server.cpp Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update examples/server/server.cpp Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update examples/server/server.cpp Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * * change to set --------- Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> server : add --log-disable to disable logging to file (ggerganov#4260) * * add --log-disable to disable logging to file in the server example * * typo fix ggml : add ggml_soft_max_ext (ggerganov#4256) * metal : implement soft_max_ext * cuda : implement soft_max_ext * ggml : implement soft_max_ext (CPU) * batched-bench : print threads ggml-ci * metal : simplify soft_max encoding ggml-ci * cuda : use 512 threads for soft_max instead of 32 * ggml : update soft max cpu * cuda : do warp-based block reduce * cuda : increase max block size to 1024 * cuda : fix warp reduction initialization of shared mem * metal : warp-based reduction for soft max kernel * metal : warp-based reduce for rms_norm * metal : simplify soft max kernel ggml-ci * alloc : fix build with debug py : add requirements file for convert-hf-to-gguf.py (ggerganov#4277) This commit adds a requirements file for the convert-hf-to-gguf.py script, and also add the torch and transformers packages to it. The motivation for this is that currently running convert-hf-to-gguf.py will produce the following error: ```console $ python3 -m venv venv $ source venv/bin/activate (venv) $ pip install -r requirements.txt Collecting numpy==1.24.4 Collecting sentencepiece==0.1.98 Collecting gguf>=0.1.0 Installing collected packages: sentencepiece, numpy, gguf Successfully installed gguf-0.5.1 numpy-1.24.4 sentencepiece-0.1.98 (venv) $ python convert-hf-to-gguf.py --help Traceback (most recent call last): File "llama.cpp/convert-hf-to-gguf.py", line 16, in <module> import torch ModuleNotFoundError: No module named 'torch' ``` With this commit, and using requirements-hf-to-gguf.txt instead of requirements.txt, the script can be run and shows the help output. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> llama : fix integer overflow during quantization (ggerganov#4284) happens with multi-threaded quantization of Qwen-72B ggml-ci llama : add Qwen support (ggerganov#4281) * enable qwen to llama.cpp * llama : do not GPU split bias tensors --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> llama : support attention bias on LLaMA architecture (ggerganov#4283) * Support attention_bias on LLaMA architecture QKVO bias, should fix InternLM (ggerganov#3133) and works for LLaMAfied Qwen models (ggerganov#3743 (comment)). * check existence of qkvo bias while loading llama models Tested on LLaMA2, CUDA and CPU. * Update llama.cpp build : enable libstdc++ assertions for debug builds (ggerganov#4275) swift : fix token_to_piece implementation (ggerganov#4278) * Fix token_to_piece implementation in Swift * Fix errors llama : support optional tensors (ggerganov#4283) llama : avoid using "optional" keyword (ggerganov#4283) llama : pad KV cache size (ggerganov#4280) * llama : pad KV cache size to 32 * metal : try to improve batched decoding py : add grammar to oai like api (ggerganov#4294) server : fix OpenAI API `stop` field to be optional (ggerganov#4299) (cherry picked from commit Mozilla-Ocho/llamafile@e8c92bc) ggml : fix soft max out-of-bounds access (ggerganov#4307) ggml-ci ggml : reuse ggml_get_n_tasks() in ggml_graph_plan() (ggerganov#4308) * ggml : fix soft max out-of-bounds access ggml-ci * ggml : reuse ggml_get_n_tasks() in ggml_graph_plan() ggml-ci grammar-parser : fix typo (ggerganov#4318) preceeding -> preceding swift : fix prompt tokenization logic (ggerganov#4321) swift : fix concatenation method to avoid invalid UTF8 stringfication (ggerganov#4325) simple : update error message for KV cache check (ggerganov#4324) This commit updates the error message that is printed when the KV cache is not big enough to hold all the prompt and generated tokens. Specifically it removes the reference to n_parallel and replaces it with n_len. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> swift : revert compiler checks for swift package (ggerganov#4332) sampling : custom samplers order (ggerganov#4285) * Samplers sequence order w parameter * Cleaned commented code * Fixed formatting * Rewrote with unordered_map * Revert and rewrite, too many problems and safeguards would be needed * Fixed code style * Code style fixes according to review * More readable samplers input string, fixed help * Style fix in sampler_queue * Formatting fixes * Fixing whitespaces llama : allow overriding GGUF metadata when loading model (ggerganov#4092) * feat: Allow overriding GGUF metadata when loading model * Fix the one time GCC is stricter than clang about something * Step1 * Refactor... basically everything! * Nuke obsolete GetArrayLen struct * simplify std::string specialization * Various cleanups Add informational output when overrides are applied Warn user when an override with the wrong type is specified * Fix broken logic for parsing bool KV overrides Fix issue where overrides didn't apply when key missing in GGUF metadata Resolve merge changes * llama : rearrange model params * Update new GET_KEY call Add note that metadata KV overrides aren't reflected in initial metadata KV info dump --------- Co-authored-by: cebtenzzre <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> grammar : pre-computed pieces + reserve mem + less string copies (ggerganov#4330) * reserve space for codepoints * improvement for the appended 0 * used precomputed token text for grammar sample * reserve canidates_decoded * reserve canidates_grammar * remove candidates_decoded * Revert "remove candidates_decoded" This reverts commit 3773328. * changed decode_utf8 to take src by ref speculative : support `--color` (ggerganov#4343) * speculative: add some colors * minor : add braces --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> common : fix compile warning server : recognize cache_prompt parameter in OAI API (ggerganov#4347) train : fix ggerganov#4227 (double free in examples/train-text-from-scratch/train-text-from-scratch.cpp) (ggerganov#4351) On commit b1108 (44c117f) xaedes added ggml_allocr * alloc = NULL; ... (many lines in between) if (alloc) { ggml_allocr_free(alloc); } Which is correct, but it's easy to lose context after many lines in between. On commit b1287 (0e76a899) xaedes made a big change. From here on, alloc is freed eagerly. alloc = ggml_allocr_new(...) ... (short lines of code) ggml_allocr_free(alloc) This happens a few times, but alloc is never set to NULL, and many lines below, we still have if (alloc) { ggml_allocr_free(alloc); } which causes a double-free. llama : per-layer KV cache + quantum K cache (ggerganov#4309) * per-layer KV * remove unnecessary copies * less code duplication, offload k and v separately * llama : offload KV cache per-layer * llama : offload K shift tensors * llama : offload for rest of the model arches * llama : enable offload debug temporarily * llama : keep the KV related layers on the device * llama : remove mirrors, perform Device -> Host when partial offload * common : add command-line arg to disable KV cache offloading * llama : update session save/load * llama : support quantum K cache (ggerganov#4312) * llama : support quantum K cache (wip) * metal : add F32 -> Q8_0 copy kernel * cuda : add F32 -> Q8_0 copy kernel ggml-ci * cuda : use mmv kernel for quantum cache ops * llama : pass KV cache type through API * llama : fix build ggml-ci * metal : add F32 -> Q4_0 copy kernel * metal : add F32 -> Q4_1 copy kernel * cuda : wip * cuda : add F32 -> Q4_0 and F32 -> Q4_1 copy kernels * llama-bench : support type_k/type_v * metal : use mm kernel only for quantum KV cache * cuda : add comment * llama : remove memory_f16 and kv_f16 flags --------- Co-authored-by: slaren <slarengh@gmail.com> * readme : add API change notice --------- Co-authored-by: slaren <slarengh@gmail.com> sync : ggml (new ops, tests, backend, etc.) (ggerganov#4359) * sync : ggml (part 1) * sync : ggml (part 2, CUDA) * sync : ggml (part 3, Metal) * ggml : build fixes ggml-ci * cuda : restore lost changes * cuda : restore lost changes (StableLM rope) * cmake : enable separable compilation for CUDA ggml-ci * ggml-cuda : remove device side dequantize * Revert "cmake : enable separable compilation for CUDA" This reverts commit 09e35d0. * cuda : remove assert for rope * tests : add test-backend-ops * ggml : fix bug in ggml_concat * ggml : restore `ggml_get_n_tasks()` logic in `ggml_graph_plan()` * ci : try to fix macOS * ggml-backend : remove backend self-registration * ci : disable Metal for macOS cmake build ggml-ci * metal : fix "supports family" call * metal : fix assert * metal : print resource path ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com> grammar : revert the replacement of llama_token_to_piece with id_to_token (ggerganov#4396) Update README.md (ggerganov#4388) Fix small typo. ggml : increased GGML_MAX_PARAMS to allow finetuning of 70b models (ggerganov#4424) server : fix local model name in server (ggerganov#4420) llama : document logits_all deprecation (ggerganov#4418) llama_context_params.logits_all is a parameter for controlling llama_eval. This documents that logits_all should not be used with llama_decode and llama_batch. build : target Windows 8 for standard mingw-w64 (ggerganov#4405) * build : target Windows 8 for standard mingw-w64 * make : fix missing console.o deps This was causing a link error with `make all` on Windows. english : use `typos` to fix comments and logs (ggerganov#4354) server : tweak default sampling parameters (ggerganov#4367) * Set a more typical Top P setting as the default * Update temp max llama : add Mixtral support (ggerganov#4406) * convert : support Mixtral as LLAMA arch * convert : fix n_ff typo * llama : model loading * ggml : sync latest ggml_mul_mat_id * llama : update graph to support MoE * llama : fix cur -> cur_expert * llama : first working version * llama : fix expert weighting in the FFN * ggml : ggml_get_rows support 2D indexing [n_tokens, n_experts] (cpu only) * ggml : add n_as argument to ggml_mul_mat_id * ggml : fix ggml_get_rows to take into account ne02 / ne11 * metal : add more general support for ggml_get_rows + tests * llama : add basic support for offloading moe with CUDA * metal : add/mul/div use general kernel when src1 not cont * metal : reduce the kernel launches for ggml_mul_mat_id * ggml : get_rows : support non-contiguos tensors with gaps, generalize up to 3D * ggml : update get_rows f16 and q * cuda : support non-contiguous src1 in get_rows * llama : offload missing ffn_moe_silu * metal : fix ggml_get_rows to work with non-cont src1 * metal : add indirect mat-vec kernels for all quantization types * llama : do not quantize expert gating tensors * llama : add n_expert and n_expert_used to hparams + change quants * test-backend-ops : add moe test * cuda : fix get_rows when ncols is odd * convert : determine n_ctx correctly * metal : fix ggml_mul_mat_id for F32 * test-backend-ops : make experts more evenly probable (test_moe) * test-backend-ops : cleanup, add moe test for batches * test-backend-ops : add cpy from f32 -> all types test * test-backend-ops : fix dequantize block offset * llama : fix hard-coded number of experts * test-backend-ops : simplify and disable slow tests to avoid CI timeout * test-backend-ops : disable MOE test with thread sanitizer * cuda : fix mul_mat_id with multi gpu * convert : use 1e6 rope_freq_base for mixtral * convert : fix style * convert : support safetensors format * gguf-py : bump version * metal : add cpy f16 -> f32 kernel * metal : fix binary ops for ne10 % 4 != 0 * test-backend-ops : add one more sum_rows test * ggml : do not use BLAS with ggml_mul_mat_id * convert-hf : support for mixtral-instruct (ggerganov#4428) * convert : typo fix, add additional hyperparameters, use LLaMA arch for Mixtral-instruct * convert : use sentencepiece tokenizer for Mixtral-instruct * convert : make flake8 happy * metal : fix soft_max kernels ref: ggerganov/ggml@1914017 * metal : limit kernels to not use more than the allowed threads --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Radek Pilar <github@mrkva.eu>
Hi, @ggerganov
As more and more people begin to use Qwen's open-source models, the influence of Qwen models is growing, especially in China. Many community members are interested in adding support for Qwen models to llama.cpp. To do this, we need to make some changes, which we hope can be merged into the main branch of llama.cpp. In the future, we would be happy to help maintain support for Qwen models in llama.cpp. We sincerely hope that our pull request can be accepted. Thank you.
This PR contains the following features:
edits by gg