Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ggml-cuda : support stablelm rope #4156

Merged
merged 4 commits into from
Nov 24, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Next Next commit
ggml-cuda : support stablelm rope
  • Loading branch information
slaren committed Nov 21, 2023
commit 58444931dc1f4a885b6e0e6ddb54dc4656a406bb
37 changes: 22 additions & 15 deletions ggml-cuda.cu
Original file line number Diff line number Diff line change
Expand Up @@ -4609,8 +4609,8 @@ static __global__ void rope(

template<typename T, bool has_pos>
static __global__ void rope_neox(
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
float ext_factor, float attn_factor, rope_corr_dims corr_dims
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);

Expand All @@ -4619,23 +4619,25 @@ static __global__ void rope_neox(
}

const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int i = row*ncols + col/2;
const int ib = col / n_dims;
const int ic = col % n_dims;

const int i = row*ncols + ib*n_dims + ic/2;
const int i2 = row/p_delta_rows;

// simplified from `(ib * ncols + col) * (-1 / ncols)`, where ib is assumed to be zero
const float cur_rot = -float(col)/ncols;
float cur_rot = inv_ndims * ic - ib;
slaren marked this conversation as resolved.
Show resolved Hide resolved

const int p = has_pos ? pos[i2] : 0;
const float theta_base = p*powf(freq_base, cur_rot);
const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);

float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);

const float x0 = x[i + 0];
const float x1 = x[i + ncols/2];
const float x1 = x[i + n_dims/2];

dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
}

static __global__ void rope_glm_f32(
Expand Down Expand Up @@ -5738,20 +5740,26 @@ static void rope_cuda(

template<typename T>
static void rope_neox_cuda(
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);

const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.0f / n_dims;

if (pos == nullptr) {
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims
);
} else {
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims,
theta_scale, inv_ndims
);
}
}
Expand Down Expand Up @@ -6706,15 +6714,14 @@ inline void ggml_cuda_op_rope(
GGML_ASSERT(false);
rope_glm_f32_cuda(src0_dd, dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, main_stream);
} else if (is_neox) {
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
if (src0->type == GGML_TYPE_F32) {
rope_neox_cuda(
(const float *)src0_dd, (float *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
(const float *)src0_dd, (float *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream
);
} else if (src0->type == GGML_TYPE_F16) {
rope_neox_cuda(
(const half *)src0_dd, (half *)dst_dd, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
(const half *)src0_dd, (half *)dst_dd, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, main_stream
);
} else {
Expand Down
Loading