Skip to content

Commit

Permalink
add retrieval example
Browse files Browse the repository at this point in the history
  • Loading branch information
mscheong01 committed Mar 21, 2024
1 parent c5b8595 commit eb760a9
Show file tree
Hide file tree
Showing 7 changed files with 335 additions and 1 deletion.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@ models-mnt
/batched-bench
/export-lora
/finetune
/retrieval
/speculative
/parallel
/train-text-from-scratch
Expand Down
6 changes: 5 additions & 1 deletion Makefile
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
BUILD_TARGETS = \
main quantize quantize-stats perplexity imatrix embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml \
simple batched batched-bench save-load-state server gguf llama-bench libllava.a llava-cli baby-llama beam-search \
speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o
retrieval speculative infill tokenize benchmark-matmult parallel finetune export-lora lookahead lookup passkey gritlm tests/test-c.o

# Binaries only useful for tests
TEST_TARGETS = \
Expand Down Expand Up @@ -794,6 +794,10 @@ export-lora: examples/export-lora/export-lora.cpp ggml.o common/common.h $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)

retrieval: examples/retrieval/retrieval.cpp ggml.o llama.o $(COMMON_DEPS) $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)

speculative: examples/speculative/speculative.cpp ggml.o llama.o $(COMMON_DEPS) grammar-parser.o $(OBJS)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
Expand Down
42 changes: 42 additions & 0 deletions common/common.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -276,6 +276,43 @@ static bool gpt_params_find_arg(int argc, char ** argv, gpt_params & params, int
}
return true;
}
if (arg == "--context-files") {
if (++i >= argc) {
invalid_param = true;
return true;
}
while(true) {
std::ifstream file(argv[i]);
if (!file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
// store the external file name in params
params.context_files.push_back(argv[i]);
if (i + 1 >= argc || argv[i + 1][0] == '-') {
break;
}
i++;
}
return true;
}
if (arg == "--chunk-size") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.chunk_size = std::stoi(argv[i]);
return true;
}
if (arg == "--chunk-separator") {
if (++i >= argc) {
invalid_param = true;
return true;
}
params.chunk_separator = argv[i];
return true;
}
if (arg == "-n" || arg == "--n-predict") {
if (++i >= argc) {
invalid_param = true;
Expand Down Expand Up @@ -1282,6 +1319,11 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
printf(" prompt file to start generation.\n");
printf(" -bf FNAME, --binary-file FNAME\n");
printf(" binary file containing multiple choice tasks.\n");
printf(" --context-files FNAME1 FNAME2...\n");
printf(" files containing context to embed.\n");
printf(" --chunk-size N minimum length of embedded text chunk (default:%d)\n", params.chunk_size);
printf(" --chunk-separator STRING\n");
printf(" string to separate chunks (default: newline)\n");
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
printf(" -b N, --batch-size N logical maximum batch size (default: %d)\n", params.n_batch);
Expand Down
3 changes: 3 additions & 0 deletions common/common.h
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,9 @@ struct gpt_params {
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
std::vector<std::string> context_files = {}; // context files to embed
int32_t chunk_size = 64; // chunk size for context embedding
std::string chunk_separator = "\n"; // chunk separator for context embedding

ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;

Expand Down
1 change: 1 addition & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ else()
add_subdirectory(perplexity)
add_subdirectory(quantize)
add_subdirectory(quantize-stats)
add_subdirectory(retrieval)
add_subdirectory(save-load-state)
add_subdirectory(simple)
add_subdirectory(passkey)
Expand Down
5 changes: 5 additions & 0 deletions examples/retrieval/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
set(TARGET retrieval)
add_executable(${TARGET} retrieval.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)
278 changes: 278 additions & 0 deletions examples/retrieval/retrieval.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
#include "common.h"
#include "llama.h"

#include <algorithm>
#include <fstream>

struct chunk {
// filename
std::string filename;
// original file position
int64_t filepos;
// original text data
std::string textdata = "";
// tokenized text data
std::vector<std::int32_t> tokens;
// embedding
std::vector<float> embedding;
// cosin similarity
float similarity;
};

// chunk file data to chunks of size >= chunk_size
// chunk_separator is the separator between chunks
static std::vector<chunk> chunk_file(const std::string filename, int chunk_size, std::string chunk_separator) {
std::vector<chunk> chunks;
std::ifstream f(filename.c_str());

if (!f.is_open()) {
fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
return chunks;
}

chunk current_chunk;
char buffer[chunk_size];
int64_t filepos = 0;
std::string current = "";
while (f.read(buffer, chunk_size)) {
current += std::string(buffer, f.gcount());
size_t pos;
while ((pos = current.find(chunk_separator)) != std::string::npos) {
current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
if ((int) current_chunk.textdata.size() > chunk_size) {
// save chunk
current_chunk.filepos = filepos;
current_chunk.filename = filename;
chunks.push_back(current_chunk);
// update filepos
filepos += (int) current_chunk.textdata.size();
// reset current_chunk
current_chunk = chunk();
}
current = current.substr(pos + chunk_separator.size());
}

}
// add leftover data to last chunk
if (current_chunk.textdata.size() > 0) {
if (chunks.empty()) {
current_chunk.filepos = filepos;
current_chunk.filename = filename;
chunks.push_back(current_chunk);
} else {
chunks.back().textdata += current_chunk.textdata;
}
}
f.close();
return chunks;
}

static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, int seq_id) {
for (size_t i = 0; i < tokens.size(); i++) {
llama_batch_add(batch, tokens[i], i, { seq_id }, i == tokens.size() - 1);
}
}

static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);

// run model
fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
if (llama_decode(ctx, batch) < 0) {
fprintf(stderr, "%s : failed to decode\n", __func__);
}

for (int i = 0; i < batch.n_tokens; i++) {
if (!batch.logits[i]) {
continue;
}

// try to get sequence embeddings - supported only when pooling_type is not NONE
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
if (embd == NULL) {
fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
continue;
}
}

float * out = output + batch.seq_id[i][0] * n_embd;
llama_embd_normalize(embd, out, n_embd);
}
}

int main(int argc, char ** argv) {
gpt_params params;

if (!gpt_params_parse(argc, argv, params)) {
return 1;
}

if (params.chunk_size <= 0) {
fprintf(stderr, "chunk_size must be positive\n");
return 1;
}
if (params.context_files.empty()) {
fprintf(stderr, "context_files must be specified\n");
return 1;
}
params.embedding = true;

print_build_info();

if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}

printf("processing files:\n");
for (auto & context_file : params.context_files) {
printf("%s\n", context_file.c_str());
}

std::vector<chunk> chunks;
for (auto & context_file : params.context_files) {
std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
}
printf("Number of chunks: %ld\n", chunks.size());

llama_backend_init();
llama_numa_init(params.numa);

llama_model * model;
llama_context * ctx;

// load the model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == NULL) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
return 1;
}

const int n_ctx_train = llama_n_ctx_train(model);
const int n_ctx = llama_n_ctx(ctx);

if (n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, n_ctx);
}

// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
}

// max batch size
const uint64_t n_batch = params.n_batch;
GGML_ASSERT(params.n_batch >= params.n_ctx);

// tokenize the prompts and trim
for (auto & chunk : chunks) {
auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
if (inp.size() > n_batch) {
inp.resize(n_batch);
}
// add eos if not present
if (inp.empty() || inp.back() != llama_token_eos(model)) {
inp.push_back(llama_token_eos(model));
}
chunk.tokens = inp;
}

// tokenization stats
if (params.verbose_prompt) {
for (int i = 0; i < (int) chunks.size(); i++) {
fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
}
fprintf(stderr, "\n\n");
}
}

// initialize batch
const int n_chunks = chunks.size();
struct llama_batch batch = llama_batch_init(n_batch, 0, 1);

// allocate output
const int n_embd = llama_n_embd(model);
std::vector<float> embeddings(n_chunks * n_embd, 0);
float * emb = embeddings.data();

// break into batches
int p = 0; // number of prompts processed already
int s = 0; // number of prompts in current batch
for (int k = 0; k < n_chunks; k++) {
// clamp to n_batch tokens
auto & inp = chunks[k].tokens;

const uint64_t n_toks = inp.size();

// encode if at capacity
if (batch.n_tokens + n_toks > n_batch) {
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);
llama_batch_clear(batch);
p += s;
s = 0;
}

// add to batch
batch_add_seq(batch, inp, s);
s += 1;
}

// final batch
float * out = emb + p * n_embd;
batch_decode(ctx, batch, out, s, n_embd);

// save embeddings to chunks
for (int i = 0; i < n_chunks; i++) {
chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
}

// start loop, receive query and return top k similar chunks based on cosine similarity
std::string query;
while (true) {
printf("Enter query: ");
std::getline(std::cin, query);
if (query == "exit" || query == "quit" || query == "q") {
break;
}
std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);

struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
batch_add_seq(query_batch, query_tokens, 0);
float * query_emb = new float[n_embd];
batch_decode(ctx, query_batch, query_emb, 1, n_embd);
std::vector<float> query_embedding(query_emb, query_emb + n_embd);
delete[] query_emb;
llama_batch_clear(query_batch);

for (int i = 0; i < n_chunks; i++) {
float similarity = llama_embd_similarity_cos(chunks[i].embedding.data(), query_embedding.data(), n_embd);
chunks[i].similarity = similarity;
}
std::sort(chunks.begin(), chunks.end(), [](chunk & a, chunk & b) {
return a.similarity > b.similarity;
});
printf("Top %d similar chunks:\n", params.sparams.top_k);
for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
printf("filename: %s\n", chunks[i].filename.c_str());
printf("filepos: %lld\n", chunks[i].filepos);
printf("similarity: %f\n", chunks[i].similarity);
printf("textdata:\n%s\n", chunks[i].textdata.c_str());
printf("--------------------\n");
}
}

// clean up
llama_print_timings(ctx);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
}

0 comments on commit eb760a9

Please sign in to comment.