Skip to content

Commit

Permalink
Server: clean up OAI params parsing function (#6284)
Browse files Browse the repository at this point in the history
* server: clean up oai parsing function

* fix response_format

* fix empty response_format

* minor fixes

* add TODO for logprobs

* update docs
  • Loading branch information
ngxson authored Mar 25, 2024
1 parent 95ad616 commit ad3a050
Show file tree
Hide file tree
Showing 3 changed files with 63 additions and 38 deletions.
2 changes: 1 addition & 1 deletion examples/server/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -360,7 +360,7 @@ Notice that each `probs` is an array of length `n_probs`.
- `default_generation_settings` - the default generation settings for the `/completion` endpoint, has the same fields as the `generation_settings` response object from the `/completion` endpoint.
- `total_slots` - the total number of slots for process requests (defined by `--parallel` option)

- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint.
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only model with [supported chat template](https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template) can be used optimally with this endpoint. By default, ChatML template will be used.

*Options:*

Expand Down
13 changes: 9 additions & 4 deletions examples/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -847,9 +847,16 @@ struct server_context {
slot.sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot.params.n_keep = json_value(data, "n_keep", slot.params.n_keep);
slot.params.seed = json_value(data, "seed", default_params.seed);
if (data.contains("json_schema") && !data.contains("grammar")) {
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);

// process "json_schema" and "grammar"
if (data.contains("json_schema") && data.contains("grammar")) {
send_error(task, "Either \"json_schema\" or \"grammar\" can be specified, but not both", ERROR_TYPE_INVALID_REQUEST);
return false;
} else if (data.contains("json_schema") && !data.contains("grammar")) {
try {
auto schema = json_value(data, "json_schema", json::object());
auto schema = json_value(data, "json_schema", json::object());
slot.sparams.grammar = json_schema_to_grammar(schema);
} catch (const std::exception & e) {
send_error(task, std::string("\"json_schema\": ") + e.what(), ERROR_TYPE_INVALID_REQUEST);
Expand All @@ -858,8 +865,6 @@ struct server_context {
} else {
slot.sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
}
slot.sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot.sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);

if (slot.params.cache_prompt && slot.ga_n != 1) {
LOG_WARNING("cache_prompt is not supported with group-attention", {});
Expand Down
86 changes: 53 additions & 33 deletions examples/server/utils.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -352,51 +352,71 @@ static json oaicompat_completion_params_parse(
// https://platform.openai.com/docs/api-reference/chat/create
llama_sampling_params default_sparams;
llama_params["model"] = json_value(body, "model", std::string("unknown"));
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
llama_params["top_p"] = json_value(body, "top_p", 1.0);
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
llama_params["logit_bias"] = json_value(body, "logit_bias", json::object());
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
llama_params["stream"] = json_value(body, "stream", false);
llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
llama_params["n_keep"] = json_value(body, "n_keep", 0);

if (body.contains("grammar")) {
llama_params["grammar"] = json_value(body, "grammar", json::object());
}
llama_params["temperature"] = json_value(body, "temperature", 0.0);
llama_params["top_p"] = json_value(body, "top_p", 1.0);

if (body.contains("response_format")) {
auto response_format = json_value(body, "response_format", json::object());
if (response_format.contains("type")) {
if (response_format["type"] == "json_object") {
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
} else {
throw std::runtime_error("response_format type not supported: " + response_format["type"].dump());
}
}
}
// Apply chat template to the list of messages
llama_params["prompt"] = format_chat(model, chat_template, body["messages"]);

// Handle 'stop' field
// Handle "stop" field
if (body.contains("stop") && body["stop"].is_string()) {
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
} else {
llama_params["stop"] = json_value(body, "stop", json::array());
}
// Some chat templates don't use EOS token to stop generation
// We must add their end sequences to list of stop words
llama_params["stop"].push_back("<|im_end|>"); // chatml
llama_params["stop"].push_back("<end_of_turn>"); // gemma

// Ensure there is ChatML-specific end sequence among stop words
llama_params["stop"].push_back("<|im_end|>");
// Handle "response_format" field
if (body.contains("response_format")) {
json response_format = json_value(body, "response_format", json::object());
std::string response_type = json_value(response_format, "type", std::string());
if (response_type == "json_object") {
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
} else if (!response_type.empty() && response_type != "text") {
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
}
}

// Handle "n" field
int n_choices = json_value(body, "n", 1);
if (n_choices != 1) {
throw std::runtime_error("Only one completion choice is allowed");
}

// Handle "logprobs" field
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
if (body.contains("logprobs")) {
llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
} else if (body.contains("top_logprobs")) {
throw std::runtime_error("top_logprobs requires logprobs to be set to true");
}

// Params supported by OAI but unsupported by llama.cpp
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
for (auto & param : unsupported_params) {
if (body.contains(param)) {
throw std::runtime_error("Unsupported param: " + param);
}
}

// Copy remaining properties to llama_params
// This allows user to use llama.cpp-specific params like "mirostat", "tfs_z",... via OAI endpoint.
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
for (const auto & item : body.items()) {
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
llama_params[item.key()] = item.value();
}
}

return llama_params;
}
Expand Down

0 comments on commit ad3a050

Please sign in to comment.