Skip to content

Commit

Permalink
gguf : general usability improvements (#3409)
Browse files Browse the repository at this point in the history
  • Loading branch information
cebtenzzre authored Oct 2, 2023
1 parent 9476b01 commit 0fe3210
Show file tree
Hide file tree
Showing 5 changed files with 120 additions and 101 deletions.
5 changes: 2 additions & 3 deletions convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,8 +41,7 @@

NDArray: TypeAlias = 'np.ndarray[Any, Any]'

ARCH=gguf.MODEL_ARCH.LLAMA
NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
ARCH = gguf.MODEL_ARCH.LLAMA

DEFAULT_CONCURRENCY = 8
#
Expand Down Expand Up @@ -953,7 +952,7 @@ def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyM
of.close()

def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type

if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
return GGMLFileType.AllF32
Expand Down
2 changes: 1 addition & 1 deletion examples/finetune/convert-finetune-checkpoint-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -313,7 +313,7 @@ def save_gguf(self, gguf_writer):
gguf_writer.add_feed_forward_length(self.get_n_ff())

def tensor_name(key, bid=None, suffix=".weight"):
return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + suffix
return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix

class Layer:
def __init__(self, params, lora_params, bid):
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -364,7 +364,7 @@ def save_gguf(self, gguf_writer):
gguf_writer.add_feed_forward_length(self.get_n_ff())

def tensor_name(key, bid=None):
return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + ".weight"
return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"

class Layer:
def __init__(self, params, bid):
Expand Down
210 changes: 115 additions & 95 deletions gguf-py/gguf/gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -118,76 +118,97 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH.STARCODER: "starcoder",
}

MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
MODEL_ARCH.LLAMA: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPTNEOX: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.FALCON: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.BAICHUAN: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.STARCODER: {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
},
MODEL_ARCH.GPT2: {
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
MODEL_TENSOR.POS_EMBD: "position_embd",
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
MODEL_TENSOR.OUTPUT: "output",
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",

MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
}

MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_ARCH.LLAMA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPTNEOX: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.FALCON: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_NORM_2,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.BAICHUAN: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.STARCODER: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.POS_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_QKV,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.GPT2: [
# TODO
},
],
# TODO
}

Expand Down Expand Up @@ -338,28 +359,24 @@ class TensorNameMap:

mapping: dict[str, tuple[MODEL_TENSOR, str]]

tensor_names: dict[MODEL_TENSOR, str]

def __init__(self, arch: MODEL_ARCH, n_blocks: int):
mapping = self.mapping = {}
tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch]
self.mapping = {}
for tensor, keys in self.mappings_cfg.items():
tensor_name = tensor_names.get(tensor)
if tensor_name is None:
if tensor not in MODEL_TENSORS[arch]:
continue
mapping[tensor_name] = (tensor, tensor_name)
tensor_name = TENSOR_NAMES[tensor]
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
mapping[key] = (tensor, tensor_name)
self.mapping[key] = (tensor, tensor_name)
for bid in range(n_blocks):
for tensor, keys in self.block_mappings_cfg.items():
tensor_name = tensor_names.get(tensor)
if tensor_name is None:
if tensor not in MODEL_TENSORS[arch]:
continue
tensor_name = tensor_name.format(bid = bid)
mapping[tensor_name] = (tensor, tensor_name)
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
key = key.format(bid = bid)
mapping[key] = (tensor, tensor_name)
self.mapping[key] = (tensor, tensor_name)

def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
result = self.mapping.get(key)
Expand Down Expand Up @@ -800,22 +817,25 @@ class SpecialVocab:
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
special_token_ids: dict[str, int] = {}

def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None):
def __init__(
self, path: str | os.PathLike[str], load_merges: bool = False,
special_token_types: tuple[str, ...] | None = None,
):
self.special_token_ids = {}
self.load_merges = load_merges
if special_token_types is not None:
self.special_token_types = special_token_types
self.load(path)
self._load(Path(path))

def load(self, path: Path):
if not self.try_load_from_tokenizer_json(path):
self.try_load_from_config_json(path)
def _load(self, path: Path) -> None:
if not self._try_load_from_tokenizer_json(path):
self._try_load_from_config_json(path)

def try_load_from_tokenizer_json(self, path: Path) -> bool:
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer_file = path / 'tokenizer.json'
if not tokenizer_file.is_file():
return False
with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
with open(tokenizer_file, encoding = 'utf-8') as f:
tokenizer = json.load(f)
if self.load_merges:
merges = tokenizer.get('model', {}).get('merges')
Expand All @@ -825,7 +845,7 @@ def try_load_from_tokenizer_json(self, path: Path) -> bool:
added_tokens = tokenizer.get('added_tokens')
if added_tokens is None or not tokenizer_config_file.is_file():
return True
with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
with open(tokenizer_config_file, encoding = 'utf-8') as f:
tokenizer_config = json.load(f)
for typ in self.special_token_types:
entry = tokenizer_config.get(f'{typ}_token')
Expand All @@ -844,19 +864,19 @@ def try_load_from_tokenizer_json(self, path: Path) -> bool:
break
return True

def try_load_from_config_json(self, path: Path) -> bool:
def _try_load_from_config_json(self, path: Path) -> bool:
config_file = path / 'config.json'
if not config_file.is_file():
return False
with open(config_file, 'r', encoding = 'utf-8') as f:
with open(config_file, encoding = 'utf-8') as f:
config = json.load(f)
for typ in self.special_token_types:
maybe_token_id = config.get(f'{typ}_token_id')
if isinstance(maybe_token_id, int) and maybe_token_id >= 0:
self.special_token_ids[typ] = maybe_token_id
return True

def add_to_gguf(self, gw: GGUFWriter):
def add_to_gguf(self, gw: GGUFWriter) -> None:
if len(self.merges) > 0:
print(f'gguf: Adding {len(self.merges)} merge(s).')
gw.add_token_merges(self.merges)
Expand All @@ -868,8 +888,8 @@ def add_to_gguf(self, gw: GGUFWriter):
print(f'gguf: Setting special token type {typ} to {tokid}')
handler(tokid)

def __repr__(self):
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
def __repr__(self) -> str:
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids or "unset"}>'


# Example usage:
Expand Down
2 changes: 1 addition & 1 deletion gguf-py/pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[tool.poetry]
name = "gguf"
version = "0.3.3"
version = "0.4.0"
description = "Write ML models in GGUF for GGML"
authors = ["GGML <ggml@ggml.ai>"]
packages = [
Expand Down

0 comments on commit 0fe3210

Please sign in to comment.