Skip to content

Commit

Permalink
falcon7b example
Browse files Browse the repository at this point in the history
  • Loading branch information
apage43 committed Jun 6, 2023
1 parent 758471b commit 67c11da
Show file tree
Hide file tree
Showing 6 changed files with 1,073 additions and 0 deletions.
1 change: 1 addition & 0 deletions examples/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,4 @@ add_subdirectory(dolly-v2)
add_subdirectory(replit)
add_subdirectory(mpt)
add_subdirectory(starcoder)
add_subdirectory(falcon)
13 changes: 13 additions & 0 deletions examples/falcon/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
#
# falcon

set(TEST_TARGET falcon)
add_executable(${TEST_TARGET} main.cpp)
target_link_libraries(${TEST_TARGET} PRIVATE ggml common common-ggml)

#
# falcon-quantize

set(TEST_TARGET falcon-quantize)
add_executable(${TEST_TARGET} quantize.cpp)
target_link_libraries(${TEST_TARGET} PRIVATE ggml common common-ggml)
9 changes: 9 additions & 0 deletions examples/falcon/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
# falcon

Transformer architecture: falcon-7b

## Notes

- No guarantees for correctness
- The tokenizer is currently hacked - probably works only for English
- Non-parallel residual is not supported
122 changes: 122 additions & 0 deletions examples/falcon/convert-hf-to-ggml.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
# Convert Hugging Face fine-tuned bloom-like models to ggml format
#
# Usage:
#
# python3 models/convert-h5-to-ggml.py
#
# This script is similar to "convert-pt-to-ggml.py"
#

import io
import os
import sys
import struct
import json
import code
import torch
import numpy as np

from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig

# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))

if len(sys.argv) < 3:
print("Usage: python convert-hf-to-ggml.py model_name dir-output [use-f32]")
print(" model_name: name of the model to convert. Example: 'bigscience/bloomz-560m'")
print(" dir-output: directory where the output file will be written")
print(" use-f32: if present, use float32 instead of float16")
sys.exit(1)

model_name = sys.argv[1]
dir_out = sys.argv[2]

# make sure the output directory exists
os.makedirs(dir_out, exist_ok=True)

# possible data types
# ftype == 0 -> float32
# ftype == 1 -> float16
#
# map from ftype to string
ftype_str = ["f32", "f16"]
ftype = 1
if len(sys.argv) > 3:
ftype = 0

tokenizer = AutoTokenizer.from_pretrained(model_name)
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
hparams = config.to_dict()
print("Loading model: ", model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.float16 if ftype == 1 else torch.float32, low_cpu_mem_usage=True, trust_remote_code=True)
print("Model loaded: ", model_name)


fname_out = dir_out + f"/ggml-model-{model_name.split('/')[-1]}-{ftype_str[ftype]}.bin"
fout = open(fname_out, "wb")
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
fout.write(struct.pack("i", hparams["vocab_size"]))
fout.write(struct.pack("i", hparams["hidden_size"]))
fout.write(struct.pack("i", hparams["n_head"]))
fout.write(struct.pack("i", hparams["n_layer"]))
fout.write(struct.pack("i", ftype))

# Is this correct?
#
# No. Multibyte characters that span multiple tokens like emoji 🤖 won't be
# decoded properly.
dot_token = tokenizer.encode(".")[0]
for i in range(hparams["vocab_size"]):
text = tokenizer.decode([i]).encode('utf-8')
fout.write(struct.pack("i", len(text)))
fout.write(text)

list_vars = model.state_dict()
for name in list_vars.keys():
src = name
data = list_vars[src].squeeze().numpy()
data = data.astype(np.float32)

n_dims = len(data.shape)
print(name, n_dims, data.shape)

# default type is fp32
ftype_cur = 0
if ftype == 1 and n_dims > 1:
print(" Converting to float16")
data = data.astype(np.float16)
ftype_cur = 1

# header
str = name.encode('utf-8')
fout.write(struct.pack("iii", n_dims, len(str), ftype_cur))
for i in range(n_dims):
fout.write(struct.pack("i", data.shape[n_dims - 1 - i]))
fout.write(str)

# data
data.tofile(fout)

fout.close()

print("Done. Output file: " + fname_out)
print("")
Loading

0 comments on commit 67c11da

Please sign in to comment.