Skip to content

Commit

Permalink
Merge pull request joanby#3 from johnnync13/master
Browse files Browse the repository at this point in the history
All repository to colab
  • Loading branch information
joanby authored Sep 10, 2020
2 parents 60bf05f + ce8b4f7 commit 0d7be2a
Show file tree
Hide file tree
Showing 34 changed files with 13,166 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,329 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "KdUFcDsdzRyw"
},
"source": [
"# Clonamos el repositorio para obtener los dataSet"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 54
},
"colab_type": "code",
"id": "mHReFf3_y9ms",
"outputId": "c17545fd-c7dd-42c2-e3ad-4f55db21611f"
},
"outputs": [],
"source": [
"!git clone https://github.com/joanby/machinelearning-az.git"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "vNKZXgtKzU2x"
},
"source": [
"# Damos acceso a nuestro Drive"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 54
},
"colab_type": "code",
"id": "5gu7KWnzzUQ0",
"outputId": "abe602b4-3a59-470e-d508-037c6966002b"
},
"outputs": [],
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "1gUxIkHWzfHV"
},
"source": [
"# Test it"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 119
},
"colab_type": "code",
"id": "mIQt3jBMzYRE",
"outputId": "d050bd10-4da5-4ff3-db48-cead7fdee3d1"
},
"outputs": [],
"source": [
"!ls '/content/drive/My Drive' "
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "mHsK36uN0XB-"
},
"source": [
"# Google colab tools"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "kTzwfUPWzrm4"
},
"outputs": [],
"source": [
"from google.colab import files # Para manejar los archivos y, por ejemplo, exportar a su navegador\n",
"import glob # Para manejar los archivos y, por ejemplo, exportar a su navegador\n",
"from google.colab import drive # Montar tu Google drive"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "3yFpBwmNz70v"
},
"source": [
"# Plantilla de Pre Procesado - Datos Categóricos\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "v8OxSXXSz-OP"
},
"source": [
"# Cómo importar las librerías\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "edZX51YLzs59"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "8XfXlqtF0B58"
},
"source": [
"# Importar el data set\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "-nnozsHsz_-N"
},
"outputs": [],
"source": [
"dataset = pd.read_csv('/content/machinelearning-az/datasets/Part 1 - Data Preprocessing/Section 2 -------------------- Part 1 - Data Preprocessing --------------------/Data.csv')\n",
"X = dataset.iloc[:, :-1].values\n",
"y = dataset.iloc[:, 3].values\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "x8PABYut0i7y"
},
"source": [
"# Codificar datos categóricos"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "oPVZUP870DoR"
},
"outputs": [],
"source": [
"from sklearn.preprocessing import LabelEncoder, OneHotEncoder\n",
"from sklearn.compose import ColumnTransformer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "3lajo7ye0lEs"
},
"outputs": [],
"source": [
"labelencoder_X = LabelEncoder()\n",
"X[:, 0] = labelencoder_X.fit_transform(X[:, 0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "BQ-MnRSO0md2"
},
"outputs": [],
"source": [
"ct = ColumnTransformer(\n",
" [('one_hot_encoder', OneHotEncoder(categories='auto'), [0])], # The column numbers to be transformed (here is [0] but can be [0, 1, 3])\n",
" remainder='passthrough' # Leave the rest of the columns untouched\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "HSvLo8r30psf"
},
"source": [
"#onehotencoder = OneHotEncoder(categorical_features=[0])\n",
"#X = onehotencoder.fit_transform(X).toarray()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "kt9uD3hE0nxd"
},
"outputs": [],
"source": [
"X = np.array(ct.fit_transform(X), dtype=np.float)\n",
"labelencoder_y = LabelEncoder()\n",
"y = labelencoder_y.fit_transform(y)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "S-Eb4Y9M0uS1",
"outputId": "5925ae23-11d9-4bd4-ad11-c6ca7f704a0c"
},
"outputs": [],
"source": [
"print(X.shape)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"colab_type": "code",
"id": "vwx3Dzmz0wRg",
"outputId": "79b2f6dd-cf00-4adc-c382-5c9a3659648d"
},
"outputs": [],
"source": [
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 359
},
"colab_type": "code",
"id": "lILzSQnW0x8V",
"outputId": "140411a2-33f7-4dda-cab4-6ca94dd0fbf6"
},
"outputs": [],
"source": [
"result = pd.DataFrame({'Column1': X[:, 0], 'Column2': X[:, 1],'Column3': X[:, 2], 'Age': X[:, 3],'Salary': X[:, 4],'Purchased': y[:]})\n",
"display(result)"
]
}
],
"metadata": {
"colab": {
"name": "categorical_data.ipynb",
"provenance": [],
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
Loading

0 comments on commit 0d7be2a

Please sign in to comment.