Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
imhuay committed Oct 17, 2018
1 parent 08a2c0f commit 97b5592
Show file tree
Hide file tree
Showing 3 changed files with 33 additions and 33 deletions.
Binary file not shown.
66 changes: 33 additions & 33 deletions _papers/QA-视觉问答-A-综述.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,39 +10,39 @@ Index
<!-- TOC -->

- [VQA 简述](#vqa-简述)
- [VQA 与其他图像任务](#vqa-与其他图像任务)
- [基于对象检测的任务](#基于对象检测的任务)
- [图像描述任务](#图像描述任务)
- [DenseCap](#densecap)
- [VQA 中的数据集](#vqa-中的数据集)
- [DAQUAR](#daquar)
- [COCO-QA](#coco-qa)
- [VQA Dataset](#vqa-dataset)
- [FM-IQA](#fm-iqa)
- [Visual Genome](#visual-genome)
- [Visual7W](#visual7w)
- [SHAPES](#shapes)
- [VQA 的评价方法 TODO](#vqa-的评价方法-todo)
- [VQA 与其他图像任务](#vqa-与其他图像任务)
- [基于对象检测的任务](#基于对象检测的任务)
- [图像描述任务](#图像描述任务)
- [DenseCap](#densecap)
- [VQA 中的数据集](#vqa-中的数据集)
- [DAQUAR](#daquar)
- [COCO-QA](#coco-qa)
- [VQA Dataset](#vqa-dataset)
- [FM-IQA](#fm-iqa)
- [Visual Genome](#visual-genome)
- [Visual7W](#visual7w)
- [SHAPES](#shapes)
- [VQA 的评价方法 TODO](#vqa-的评价方法-todo)
- [主流模型与方法](#主流模型与方法)
- [基线模型](#基线模型)
- [分类模型](#分类模型)
- [生成模型](#生成模型)
- [贝叶斯模型](#贝叶斯模型)
- [基于 Attention 的模型](#基于-attention-的模型)
- [基于 Edge Boxes 的方法](#基于-edge-boxes-的方法)
- [基于 Uniform Grid 的方法](#基于-uniform-grid-的方法)
- [[49] Stacked Attention Networks for Image Question Answering(SAN)](#49-stacked-attention-networks-for-image-question-answeringsan)
- [[48] Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering](#48-ask-attend-and-answer-exploring-question-guided-spatial-attention-for-visual-question-answering)
- [[52] Dynamic memory networks for visual and textual question answering](#52-dynamic-memory-networks-for-visual-and-textual-question-answering)
- [[54] Hierarchical Question-Image Co-Attention for Visual Question Answering](#54-hierarchical-question-image-co-attention-for-visual-question-answering)
- [[56] Dual attention networks for multimodal reasoning and matching](#56-dual-attention-networks-for-multimodal-reasoning-and-matching)
- [基于双线性池化的模型](#基于双线性池化的模型)
- [[46] Multimodal compact bilinear pooling for visual question answering and visual grounding](#46-multimodal-compact-bilinear-pooling-for-visual-question-answering-and-visual-grounding)
- [[57] Hadamard Product for Low-rank Bilinear Pooling](#57-hadamard-product-for-low-rank-bilinear-pooling)
- [组合模型](#组合模型)
- [[44] Deep Compositional Question Answering with Neural Module Networks](#44-deep-compositional-question-answering-with-neural-module-networks)
- [[55] Training recurrent answering units with joint loss minimization for VQA](#55-training-recurrent-answering-units-with-joint-loss-minimization-for-vqa)
- [其他模型 TODO](#其他模型-todo)
- [基线模型](#基线模型)
- [分类模型](#分类模型)
- [生成模型](#生成模型)
- [贝叶斯模型](#贝叶斯模型)
- [基于 Attention 的模型](#基于-attention-的模型)
- [基于 Edge Boxes 的方法](#基于-edge-boxes-的方法)
- [基于 Uniform Grid 的方法](#基于-uniform-grid-的方法)
- [[49] Stacked Attention Networks for Image Question Answering(SAN)](#49-stacked-attention-networks-for-image-question-answeringsan)
- [[48] Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering](#48-ask-attend-and-answer-exploring-question-guided-spatial-attention-for-visual-question-answering)
- [[52] Dynamic memory networks for visual and textual question answering](#52-dynamic-memory-networks-for-visual-and-textual-question-answering)
- [[54] Hierarchical Question-Image Co-Attention for Visual Question Answering](#54-hierarchical-question-image-co-attention-for-visual-question-answering)
- [[56] Dual attention networks for multimodal reasoning and matching](#56-dual-attention-networks-for-multimodal-reasoning-and-matching)
- [基于双线性池化的模型](#基于双线性池化的模型)
- [[46] Multimodal compact bilinear pooling for visual question answering and visual grounding](#46-multimodal-compact-bilinear-pooling-for-visual-question-answering-and-visual-grounding)
- [[57] Hadamard Product for Low-rank Bilinear Pooling](#57-hadamard-product-for-low-rank-bilinear-pooling)
- [组合模型](#组合模型)
- [[44] Deep Compositional Question Answering with Neural Module Networks](#44-deep-compositional-question-answering-with-neural-module-networks)
- [[55] Training recurrent answering units with joint loss minimization for VQA](#55-training-recurrent-answering-units-with-joint-loss-minimization-for-vqa)
- [其他模型 TODO](#其他模型-todo)
- [参考文献](#参考文献)

<!-- /TOC -->
Expand Down Expand Up @@ -363,7 +363,7 @@ Index
> 这个过程实际上跟**卷积**本身很像。
<div align="center"><img src="../_assets/TIM截图20180911153132.png" height="" /></div>
**Attention 的作用**
<!-- **Attention 的作用** -->

### 基于 Edge Boxes 的方法
> [63, 51]
Expand Down
Binary file added _papers/pdf/[2018].BERT.pdf
Binary file not shown.

0 comments on commit 97b5592

Please sign in to comment.