-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
1,304 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
[submodule "DeDoDe"] | ||
path = DeDoDe | ||
url = git@github.com:georg-bn/DeDoDe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
import os | ||
from argparse import ArgumentParser | ||
|
||
import torch | ||
from torch.optim import AdamW | ||
from torch.optim.lr_scheduler import CosineAnnealingLR | ||
from torch.utils.data import ConcatDataset | ||
import torch.nn as nn | ||
|
||
from DeDoDe.datasets.megadepth import MegadepthBuilder | ||
from DeDoDe.encoder import VGG | ||
from DeDoDe.decoder import ConvRefiner, Decoder | ||
from DeDoDe import dedode_detector_L | ||
from DeDoDe.benchmarks import MegadepthNLLBenchmark | ||
from DeDoDe.model_zoo import dedode_detector_L, dedode_descriptor_B, dedode_descriptor_G | ||
|
||
from rotation_steerers.train import train_k_steps | ||
from rotation_steerers.descriptor_loss import DescriptorLoss | ||
from rotation_steerers.checkpoint import CheckPoint | ||
from rotation_steerers.steerers import DiscreteSteerer | ||
|
||
|
||
def train(detector_weights, descriptor): | ||
NUM_PROTOTYPES = 256 # == descriptor size | ||
model = descriptor.cuda() | ||
model.eval() | ||
|
||
generator = torch.nn.Linear(in_features=NUM_PROTOTYPES, | ||
out_features=NUM_PROTOTYPES, | ||
bias=False).cuda().weight.data | ||
|
||
steerer = DiscreteSteerer(generator) | ||
|
||
params = [ | ||
{"params": steerer.parameters(), "lr": 1e-3}, | ||
] | ||
optim = AdamW(params, weight_decay = 0) | ||
n0, N, k = 0, 10_000, 1000 | ||
lr_scheduler = CosineAnnealingLR(optim, T_max = N) | ||
import os | ||
experiment_name = os.path.splitext(os.path.basename(__file__))[0] | ||
checkpointer = CheckPoint("workspace/", name = experiment_name, only_steerer=True) | ||
|
||
model, optim, lr_scheduler, n0 = checkpointer.load(model, optim, lr_scheduler, n0, steerer=steerer) | ||
|
||
detector = dedode_detector_L(weights = detector_weights) | ||
loss = DescriptorLoss(detector=detector, normalize_descriptions = True, inv_temp = 20) | ||
|
||
|
||
H, W = 512, 512 | ||
mega = MegadepthBuilder(data_root="data/megadepth", loftr_ignore=True, imc21_ignore = True, use_detections=False) | ||
use_horizontal_flip_aug = False | ||
megadepth_train1 = mega.build_scenes( | ||
split="train_loftr", min_overlap=0.01, ht=H, wt=W, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, | ||
) | ||
megadepth_train2 = mega.build_scenes( | ||
split="train_loftr", min_overlap=0.35, ht=H, wt=W, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, | ||
) | ||
|
||
megadepth_train = ConcatDataset(megadepth_train1 + megadepth_train2) | ||
mega_ws = mega.weight_scenes(megadepth_train, alpha=0.75) | ||
|
||
megadepth_test = mega.build_scenes( | ||
split="test_loftr", min_overlap=0.01, ht=H, wt=W, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, | ||
) | ||
mega_test = MegadepthNLLBenchmark(ConcatDataset(megadepth_test)) | ||
# grad_scaler = torch.cuda.amp.GradScaler() | ||
|
||
checkpointer.save(model, optim, lr_scheduler, -1, steerer=steerer, label=-1) | ||
for n in range(n0, N, k): | ||
mega_sampler = torch.utils.data.WeightedRandomSampler( | ||
mega_ws, num_samples = 8 * k, replacement=False | ||
) | ||
mega_dataloader = iter( | ||
torch.utils.data.DataLoader( | ||
megadepth_train, | ||
batch_size = 8, | ||
sampler = mega_sampler, | ||
num_workers = 8, | ||
) | ||
) | ||
train_k_steps( | ||
n, k, mega_dataloader, model, loss, optim, lr_scheduler, grad_scaler = None, rot90=True, steerer=steerer, | ||
) | ||
checkpointer.save(model, optim, lr_scheduler, n, steerer=steerer, label=n) | ||
# mega_test.benchmark(detector = detector, descriptor = model) | ||
|
||
|
||
if __name__ == "__main__": | ||
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1" # For BF16 computations | ||
os.environ["OMP_NUM_THREADS"] = "16" | ||
|
||
parser = ArgumentParser() | ||
parser.add_argument("--detector_path", default="dedode_detector_C4.pth") | ||
parser.add_argument("--descriptor_path", default="dedode_descriptor_B.pth") | ||
args = parser.parse_args() | ||
weights = torch.load(args.detector_path) | ||
descriptor = dedode_descriptor_B(weights = torch.load(args.descriptor_path)) | ||
|
||
train(detector_weights=weights, descriptor=descriptor) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
import os | ||
from argparse import ArgumentParser | ||
|
||
import torch | ||
from torch.optim import AdamW | ||
from torch.optim.lr_scheduler import CosineAnnealingLR | ||
from torch.utils.data import ConcatDataset | ||
import torch.nn as nn | ||
|
||
from DeDoDe.datasets.megadepth import MegadepthBuilder | ||
from DeDoDe.descriptors.dedode_descriptor import DeDoDeDescriptor | ||
from DeDoDe.encoder import VGG | ||
from DeDoDe.decoder import ConvRefiner, Decoder | ||
from DeDoDe import dedode_detector_L | ||
from DeDoDe.benchmarks import MegadepthNLLBenchmark | ||
|
||
from rotation_steerers.train import train_k_steps | ||
from rotation_steerers.descriptor_loss import DescriptorLoss | ||
from rotation_steerers.checkpoint import CheckPoint | ||
from rotation_steerers.steerers import DiscreteSteerer | ||
|
||
|
||
def train(detector_weights): | ||
NUM_PROTOTYPES = 256 # == descriptor size | ||
residual = True | ||
hidden_blocks = 5 | ||
amp_dtype = torch.float16#torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 | ||
amp = True | ||
conv_refiner = nn.ModuleDict( | ||
{ | ||
"8": ConvRefiner( | ||
512, | ||
512, | ||
256 + NUM_PROTOTYPES, | ||
hidden_blocks = hidden_blocks, | ||
residual = residual, | ||
amp = amp, | ||
amp_dtype = amp_dtype, | ||
), | ||
"4": ConvRefiner( | ||
256+256, | ||
256, | ||
128 + NUM_PROTOTYPES, | ||
hidden_blocks = hidden_blocks, | ||
residual = residual, | ||
amp = amp, | ||
amp_dtype = amp_dtype, | ||
|
||
), | ||
"2": ConvRefiner( | ||
128+128, | ||
64, | ||
32 + NUM_PROTOTYPES, | ||
hidden_blocks = hidden_blocks, | ||
residual = residual, | ||
amp = amp, | ||
amp_dtype = amp_dtype, | ||
|
||
), | ||
"1": ConvRefiner( | ||
64 + 32, | ||
32, | ||
1 + NUM_PROTOTYPES, | ||
hidden_blocks = hidden_blocks, | ||
residual = residual, | ||
amp = amp, | ||
amp_dtype = amp_dtype, | ||
), | ||
} | ||
) | ||
import os | ||
experiment_name = os.path.splitext(os.path.basename(__file__))[0] | ||
encoder = VGG(size = "19", pretrained = True, amp = amp, amp_dtype = amp_dtype) | ||
decoder = Decoder(conv_refiner, num_prototypes=NUM_PROTOTYPES) | ||
model = DeDoDeDescriptor(encoder = encoder, decoder = decoder).cuda() | ||
|
||
generator = torch.block_diag( | ||
*( | ||
torch.tensor([[0., 1, 0, 0], | ||
[0, 0, 1, 0], | ||
[0, 0, 0, 1], | ||
[1, 0, 0, 0]], | ||
device='cuda', | ||
) | ||
for _ in range(NUM_PROTOTYPES // 4) | ||
) | ||
) | ||
steerer = DiscreteSteerer(generator) | ||
|
||
params = [ | ||
{"params": model.encoder.parameters(), "lr": 1e-5}, | ||
{"params": model.decoder.parameters(), "lr": 2e-4}, | ||
{"params": steerer.parameters(), "lr": 2e-4}, | ||
] | ||
optim = AdamW(params, weight_decay = 1e-5) | ||
n0, N, k = 0, 100_000, 1000 | ||
lr_scheduler = CosineAnnealingLR(optim, T_max = N) | ||
checkpointer = CheckPoint("workspace/", name = experiment_name) | ||
|
||
model, optim, lr_scheduler, n0 = checkpointer.load(model, optim, lr_scheduler, n0, steerer=steerer) | ||
|
||
detector = dedode_detector_L(weights = detector_weights) | ||
loss = DescriptorLoss(detector=detector, normalize_descriptions = True, inv_temp = 20) | ||
|
||
|
||
H, W = 512, 512 | ||
mega = MegadepthBuilder(data_root="data/megadepth", loftr_ignore=True, imc21_ignore = True, use_detections=False) | ||
use_horizontal_flip_aug = False | ||
megadepth_train1 = mega.build_scenes( | ||
split="train_loftr", min_overlap=0.01, ht=H, wt=W, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, | ||
) | ||
megadepth_train2 = mega.build_scenes( | ||
split="train_loftr", min_overlap=0.35, ht=H, wt=W, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, | ||
) | ||
|
||
megadepth_train = ConcatDataset(megadepth_train1 + megadepth_train2) | ||
mega_ws = mega.weight_scenes(megadepth_train, alpha=0.75) | ||
|
||
megadepth_test = mega.build_scenes( | ||
split="test_loftr", min_overlap=0.01, ht=H, wt=W, shake_t=32, use_horizontal_flip_aug = use_horizontal_flip_aug, | ||
) | ||
mega_test = MegadepthNLLBenchmark(ConcatDataset(megadepth_test)) | ||
grad_scaler = torch.cuda.amp.GradScaler() | ||
|
||
for n in range(n0, N, k): | ||
mega_sampler = torch.utils.data.WeightedRandomSampler( | ||
mega_ws, num_samples = 8 * k, replacement=False | ||
) | ||
mega_dataloader = iter( | ||
torch.utils.data.DataLoader( | ||
megadepth_train, | ||
batch_size = 8, | ||
sampler = mega_sampler, | ||
num_workers = 8, | ||
) | ||
) | ||
train_k_steps( | ||
n, k, mega_dataloader, model, loss, optim, lr_scheduler, grad_scaler = grad_scaler, rot90=True, steerer=steerer, | ||
) | ||
checkpointer.save(model, optim, lr_scheduler, n, steerer=steerer) | ||
mega_test.benchmark(detector = detector, descriptor = model) | ||
|
||
|
||
if __name__ == "__main__": | ||
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1" # For BF16 computations | ||
os.environ["OMP_NUM_THREADS"] = "16" | ||
parser = ArgumentParser() | ||
parser.add_argument("--detector_path", default="dedode_detector_C4.pth") | ||
args = parser.parse_args() | ||
weights = torch.load(args.detector_path) | ||
|
||
train(weights) |
Oops, something went wrong.