This project is a client library for the EMS API that is generated using AutoRest. It is intended to be a direct mirror of the routes and models exposed by the EMS API. This makes the package suitable for purpose-built projects that want to use the low-level API routes directly with minimal effort.
For data science and exploratory use, consider using the emsPy package instead.
pip install emsapi
In your code, create an API client object using an endpoint, username, and password:
from emsapi import emsapi
user = "..."
password = "..."
url = "https://ems.efoqa.com/api/"
client = emsapi.create(user, password, url)
If you need to change any connection settings these will be set on the config
property of the client. This property supports all configuration supported by autorest (see definition here)
# Add a proxy server for https requests
client.config.proxies.add("https", "https://my-proxy")
# Do not verify SSL certificates
client.config.connection.verify = False
# Increase the max retries to 5
client.config.retry_policy.max_retries = 5
If the EMS system id is not known, it should be retrieved before any further requests:
ems_id = client.find_ems_system_id("ems-server-name")
Different routes are exposed as members of the client
object created in the previous step. These routes match the sections in the API Explorer
documentation in the web UI. Most of them need the ems system id (see previous step).
# The routes exposed by the client:
client.analytic
client.analytic_set
client.asset
client.database
client.ems_profile
client.ems_system
client.navigation
client.parameter_set
client.profile
client.tableau
client.trajectory
client.transfer
client.upload
client.weather
Check for and handle error messages from any route
import logging
response = client.analytic.get_analytic_group_contents(ems_id)
if client.is_error(response):
message = client.get_error_message(response)
logging.error(message)
Query a time-series parameter for a flight
# List the root analytic group contents
groups = client.analytic.get_analytic_group_contents(ems_id)
# Query a specific analytic
flight = 123
altitude_id = "H4sIAAAAAAAEAG2Q0QuCMBDG34P+B/HdbZVUiApBPQT2kgi9rrn0YM7aZvbnN5JVUvdwfHD34/vu4iPXrbjTs+D7kksDF+DKezRC6ggSvzbmGmHc9z3qF6hVFZ4TMsOnQ5azmjc0AKkNlYz7A/Mm9GusUUkNZa00ijLj+BCTFd6UgApF/XQ68bx4SMHVvkyd1GjX6KytgFER46+FEZBfObOZ2db6eBBJEIlvVGfz4P+LhYRbZ29NyVCzgJD1MgitDIhrrj6+P/h04obj36VPLpuOeVIBAAA="
# Pull out altitude with 100 samples through the file.
query = {
"select": [
{
"analyticId": altitudeId
}
],
"size": 100
}
altitude = client.analytic.get_query_results(ems_id, flight, query)
Query and print the top 20 flight ids with a valid takeoff and landing
query = {
"select": [
{
"fieldId": "[-hub-][field][[[ems-core][entity-type][foqa-flights]][[ems-core][base-field][flight.uid]]]",
"aggregate": "none"
},
{
"fieldId": "[-hub-][field][[[ems-core][entity-type][foqa-flights]][[ems-core][base-field][flight.exist-takeoff]]]",
"aggregate": "none"
}
],
"filter": {
"operator": "and",
"args": [
{
"type": "filter",
"value": {
"operator": "isTrue",
"args": [
{
"type": "field",
"value": "[-hub-][field][[[ems-core][entity-type][foqa-flights]][[ems-core][base-field][flight.exist-takeoff]]]"
}
]
}
},
{
"type": "filter",
"value": {
"operator": "isTrue",
"args": [
{
"type": "field",
"value": "[-hub-][field][[[ems-core][entity-type][foqa-flights]][[ems-core][base-field][flight.exist-landing]]]"
}
]
}
}
]
},
"groupBy": [],
"orderBy": [],
"distinct": True,
"top": 20,
"format": "display"
}
result = client.database.get_query_results(ems_id, '[ems-core][entity-type][foqa-flights]', query)
pd = pandas.DataFrame(result.rows, columns=['Flight Record', 'Takeoff Exists'])
print(pd)
Run the same query as above, but with paging for a large number of result rows
query['top'] = 5000000
db_id = '[ems-core][entity-type][foqa-flights]'
response = client.database.start_async_query(ems_id, db_id, query)
if client.is_error(response):
error = client.get_error_message(response)
raise ValueError(error)
async_query_id = response.id
try:
start_index = 0
batch_size = 20000
while True:
end_index = start_index + (batch_size - 1)
read_response = client.database.read_async_query(emsId, db_id, async_query_id, start_index, end_index)
if client.is_error(read_response):
break # Some kind of error occurred
if len(read_response.rows) > 0:
for row in read_response.rows:
print(row)
if not read_response.has_more_rows:
break
start_index = end_index + 1
finally:
client.database.stop_async_query(emsId, db_id, async_query_id)