Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GO(1,q), SO(1,q), Omega(1,q), Omega(-1,2,q) #4333

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions grp/classic.gd
Original file line number Diff line number Diff line change
Expand Up @@ -432,7 +432,8 @@ DeclareConstructor( "SpecialOrthogonalGroupCons",
## odd, and <M>1</M> if <A>q</A> is even.)
## Also interesting is the group Omega( <A>e</A>, <A>d</A>, <A>q</A> ),
## see <Ref Oper="Omega" Label="construct an orthogonal group"/>,
## which is always of index <M>2</M> in SO( <A>e</A>, <A>d</A>, <A>q</A> ).
## which is of index <M>2</M> in SO( <A>e</A>, <A>d</A>, <A>q</A> ),
## except in the case <M><A>d</A> = 1</M>.
## <P/>
## If <A>filt</A> is not given it defaults to <Ref Filt="IsMatrixGroup"/>,
## and the returned group is the special orthogonal group itself.
Expand Down Expand Up @@ -652,7 +653,8 @@ DeclareConstructor( "OmegaCons", [ IsGroup, IsInt, IsPosInt, IsPosInt ] );
## (see&nbsp;<Ref Attr="InvariantQuadraticForm"/>) specified by <A>e</A>,
## and that have square spinor norm in odd characteristic
## or Dickson invariant <M>0</M> in even characteristic, respectively,
## in the category given by the filter <A>filt</A>. For odd <A>q</A>,
## in the category given by the filter <A>filt</A>. For odd <A>q</A>
## and <M><A>d</A> \geq 2</M>,
## this group has always index two in the corresponding special orthogonal group,
## which will be conjugate in <M>GL(d,q)</M> to the group returned by SO( <A>e</A>, <A>d</A>, <A>q</A> ),
## see <Ref Func="SpecialOrthogonalGroup"/>, but may fix a different form (see <Ref Sect="Classical Groups"/>).
Expand Down
73 changes: 55 additions & 18 deletions grp/classic.gi
Original file line number Diff line number Diff line change
Expand Up @@ -1138,12 +1138,21 @@ BindGlobal( "OzeroOdd", function( d, q, b )
# <d> and <q> must be odd
if d mod 2 = 0 then
Error( "<d> must be odd" );
elif d < 3 then
Error( "<d> must be at least 3" );
elif q mod 2 = 0 then
Error( "<q> must be odd" );
fi;

f := GF(q);
if d = 1 then
# The group has order two.
s:= ImmutableMatrix( f, [ [ One( f ) ] ], true );
g:= GroupWithGenerators( [ -s ] );
SetDimensionOfMatrixGroup( g, d );
SetFieldOfMatrixGroup( g, f );
SetSize( g, 2 );
SetInvariantQuadraticFormFromMatrix( g, s );
return g;
fi;

# identity matrix over <f>
id := Immutable( IdentityMat( d, f ) );
Expand Down Expand Up @@ -1229,8 +1238,6 @@ BindGlobal( "OzeroEven", function( d, q )
# <d> must be odd, <q> must be even
if d mod 2 = 0 then
Error( "<d> must be odd" );
elif d < 3 then
Error( "<d> must be at least 3" );
elif q mod 2 = 1 then
Error( "<q> must be even" );
fi;
Expand All @@ -1239,7 +1246,18 @@ BindGlobal( "OzeroEven", function( d, q )
o:= One( f );
n:= Zero( f );

if d = 3 then
if d = 1 then

# The group is trivial.
s:= ImmutableMatrix( f, [ [ o ] ], true );
g:= GroupWithGenerators( [], s );
SetDimensionOfMatrixGroup( g, d );
SetFieldOfMatrixGroup( g, f );
SetSize( g, 1 );
SetInvariantQuadraticFormFromMatrix( g, s );
return g;

elif d = 3 then

# The isomorphic symplectic group is $SL(2,<q>)$.
if q = 2 then
Expand Down Expand Up @@ -1351,7 +1369,7 @@ InstallMethod( GeneralOrthogonalGroupCons,
elif e = 0 then
g := OzeroEven( d, q );

# O+(2,q) = D_2(q-1)
# O+(2,q) = D_{2(q-1)}
elif e = +1 and d = 2 then
g := Oplus2(q);

Expand All @@ -1367,7 +1385,7 @@ InstallMethod( GeneralOrthogonalGroupCons,
elif e = +1 and q mod 2 = 1 then
g := OpmOdd( +1, d, q );

# O-(2,q) = D_2(q+1)
# O-(2,q) = D_{2(q+1)}
elif e = -1 and d = 2 then
g := Ominus2(q);

Expand Down Expand Up @@ -1450,10 +1468,13 @@ InstallMethod( SpecialOrthogonalGroupCons,
gens:= Reversed( gens );
fi;

Assert( 1, Length( gens ) = 2 and IsOne( DeterminantMat( gens[1] ) ) );

# Construct the group.
U:= GroupWithGenerators( [ gens[1], gens[1]^gens[2], gens[2]^2 ] );
if d = 1 then
U:= GroupWithGenerators( [], One( G ) );
else
Assert( 1, Length( gens ) = 2 and IsOne( DeterminantMat( gens[1] ) ) );
U:= GroupWithGenerators( [ gens[1], gens[1]^gens[2], gens[2]^2 ] );
fi;

# Set the group order.
SetSize( U, Size( G ) / 2 );
Expand All @@ -1467,9 +1488,7 @@ InstallMethod( SpecialOrthogonalGroupCons,
SetInvariantBilinearForm( U, InvariantBilinearForm( G ) );
SetInvariantQuadraticForm( U, InvariantQuadraticForm( G ) );
SetIsFullSubgroupGLorSLRespectingQuadraticForm( U, true );
if q mod 2 = 1 then
SetIsFullSubgroupGLorSLRespectingBilinearForm( U, true );
fi;
SetIsFullSubgroupGLorSLRespectingBilinearForm( U, true );
G:= U;

fi;
Expand Down Expand Up @@ -1497,8 +1516,9 @@ BindGlobal( "OmegaZero", function( d, q )
# <d> must be odd
if d mod 2 = 0 then
Error( "<d> must be odd" );
elif d < 3 then
Error( "<d> must be at least 3" );
elif d = 1 then
# The group is trivial.
return SO( d, q );
elif q mod 2 = 0 then
# For even q, the generators claimed in [RylandsTalor98] are wrong:
# For (d,q) = (5,2), the matrices generate only S4(2)' not S4(2).
Expand Down Expand Up @@ -1721,9 +1741,26 @@ BindGlobal( "OmegaMinus", function( d, q )
# <d> must be even
if d mod 2 = 1 then
Error( "<d> must be even" );
elif d < 4 then
# The construction in the paper does not apply to the case d = 2
Error( "<d> = 2 is not supported" );
elif d = 2 then
# The construction in the Rylands/Taylor paper does not apply
# to the case d = 2.
# The group 'Ominus2( q ) = GO(-1,2,q)' is a dihedral group
# of order 2*(q+1).
g:= Ominus2( q );
h:= GeneratorsOfGroup( g )[1];
Assert( 1, Order( h ) = q+1 );
if IsEvenInt( q ) then
# For even q, 'GO(-1,2,q)' is equal to 'SO(-1,2,q)',
# and 'Omega(-1,2,q)' is its unique subgroup of index two.
s:= GroupWithGenerators( [ h ] );
else
# For odd q, the group 'SO(-1,2,q)' is cyclic of order q+1,
# and 'Omega(-1,2,q)' is its unique subgroup of index two.
s:= GroupWithGenerators( [ h^2 ] );
fi;
SetInvariantBilinearForm( s, InvariantBilinearForm( g ) );
SetInvariantQuadraticForm( s, InvariantQuadraticForm( g ) );
return s;
fi;
f:= GF(q);
o:= One( f );
Expand Down
18 changes: 14 additions & 4 deletions tst/testinstall/grp/classic-G.tst
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,12 @@ true
gap> GO(IsPermGroup,3,5);
Perm_GO(0,3,5)

#
gap> IsTrivial( GO(1,3) );
false
gap> IsTrivial( GO(1,4) );
true

#
gap> GO(3);
Error, usage: GeneralOrthogonalGroup( [<filter>, ][<e>, ]<d>, <q> )
Expand Down Expand Up @@ -130,6 +136,10 @@ gap> GammaL(3,6);
Error, <subfield> must be a prime or a finite field

#
gap> Omega(1,2);
GO(0,1,2)
gap> Omega(1,3);
SO(0,1,3)
gap> Omega(3,2);
GO(0,3,2)
gap> Omega(3,3);
Expand All @@ -150,6 +160,10 @@ gap> Omega(+1,4,3);
Omega(+1,4,3)

#
gap> Omega(-1,2,2);
Omega(-1,2,2)
gap> Omega(-1,2,3);
Omega(-1,2,3)
gap> Omega(-1,4,2);
Omega(-1,4,2)
gap> Omega(-1,4,3);
Expand All @@ -170,12 +184,8 @@ Error, no method found! For debugging hints type ?Recovery from NoMethodFound
Error, no 1st choice method found for `OmegaCons' on 4 arguments

#
gap> Omega(1,2);
Error, <d> must be at least 3
gap> Omega(2,2);
Error, sign <e> = 0 but dimension <d> is even
gap> Omega(-1,2,2);
Error, <d> = 2 is not supported

#
gap> STOP_TEST("classic-G.tst", 1);
6 changes: 6 additions & 0 deletions tst/testinstall/grp/classic-S.tst
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,12 @@ true
gap> SO(IsPermGroup,3,5);
Perm_SO(0,3,5)

#
gap> IsTrivial( SO(1,3) );
true
gap> IsTrivial( SO(1,4) );
true

#
gap> SO(3);
Error, usage: SpecialOrthogonalGroup( [<filter>, ][<e>, ]<d>, <q> )
Expand Down
2 changes: 1 addition & 1 deletion tst/testinstall/grp/classic-forms.tst
Original file line number Diff line number Diff line change
Expand Up @@ -142,7 +142,7 @@ gap> grps:=[];;
gap> for d in [2,4,6,8] do
> for q in [2,3,4,5,7,8,9,16,17,25,27] do
> Add(grps, Omega(+1,d,q));
> if d <> 2 then Add(grps, Omega(-1,d,q)); fi;
> Add(grps, Omega(-1,d,q));
> od;
> od;
gap> ForAll(grps, CheckGeneratorsSpecial);
Expand Down