Skip to content

gabrieldadcarvalho/time_series

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 

Repository files navigation

Time Series Analysis in Python

This repository contains Python code for performing various time series analysis tasks. Below are the details of the functions provided:

Functions

moving_average

This function calculates the moving average of a time series data frame.

def moving_average(DF, WINDOW_SIZE):
    """
    This function calculates the moving average of a time series data frame.

    Parameters
    ----------
    DF : pandas.DataFrame
        The input data frame containing the time series data.
    WINDOW_SIZE : int
        The size of the moving average window.

    Returns
    -------
    pandas.DataFrame
        The data frame with the moving averages.
    """
    #Function code here 

remove_trend This

function removes the linear trend from a time series data frame.

def remove_trend(DF, VALUES, TIME):
    """
    This function removes the linear trend from a time series data frame.

    Parameters
    ----------
    DF : pandas.DataFrame
        The input data frame containing the time series data.

    Returns
    -------
    pandas.DataFrame
        The data frame with the linear trend removed.
    """
    #Function code here 

remove_sazonality

This function removes the seasonal component from a time series data frame.

def remove_sazonality(DF, SEASONAL_PERIOD, VALUES, TIME):
    """
    This function removes the seasonal component from a time series data frame.

    Parameters
    ----------
    DF : pandas.DataFrame
        The input data frame containing the time series data.
    SEASONAL_PERIOD : int
        The period of the seasonal component to be removed.

    Returns
    -------
    pandas.DataFrame
        The data frame with the seasonal component removed.
    """
    #Function code here 

remove_sazonality_and_trend

This function removes the seasonal and linear trend components from a time series data frame.

def remove_sazonality_and_trend(DF, SEASONAL_PERIOD, VALUES, TIME):
    """
    This function removes the seasonal and linear trend components from a time series data frame.

    Parameters
    ----------
    DF : pandas.DataFrame
        The input data frame containing the time series data.
    SEASONAL_PERIOD : int
        The period of the seasonal component to be removed.
    VALUES : str
        The name of the column containing the time series values.
    TIME : str
        The name of the column containing the time stamps.

    Returns
    -------
    pandas.DataFrame
        The data frame with the seasonal and linear trend components removed.
    """
    #Function code here 

autocorrelation

This function calculates the autocorrelation function (ACF) of a time series data frame.

def autocorrelation(DF, H, save_path):
    """
    This function calculates the autocorrelation function (ACF) of a time series data frame.

    Parameters
    ----------
    DF : pandas.DataFrame
        The input data frame containing the time series data.
    H : int
        The maximum lag value for the ACF.
    save_path : str
        The path and filename where the ACF plot should be saved.

    Returns
    -------
    numpy.ndarray
        The ACF values.
    """
    #Function code here 

Requirements

  • Python 3.x
  • Pandas
  • Plotly Express
  • Plotly Graph Objects

About

functions for analyzing time series

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages