Skip to content

g-qw/Latex-QuickList

Repository files navigation

Latex 公式速查

本文仅提供的能够在 $Markdown$ 中使用的 $Latex$ 公式。

如何插入 $Latex$ 公式?

  • 行内公式:$公式$
  • 独立公式:$$公式$$

函数

对数与指数

$a^x$ a^x
$\sqrt{x}$ \sqrt{x}
$\sqrt[3]{x}$ \sqrt[3]{x}
$\sqrt[a]{x}$ \sqrt[a]{x}
$\exp x$ \exp x
$\log x$ \log x
$\lg x$ \lg x
$\ln x$ \ln x

三角函数

$\sin x$ \sin x
$\cos x$ \cos x
$\tan x$ \tan x
$\cot x$ \cot x
$\sec x$ \sec x
$\csc x$ \csc x
$\arcsin x$ \arcsin x
$\arccos x$ \arccos x
$\arctan x$ \arctan x
$\sinh x$ \sinh x
$\cosh x$ \cosh x
$\tanh x$ \tanh x

其他函数

最小值: $\min x$ \min x 最大值: $\max x$ \max x
最大公约数: $\gcd x$ \gcd x
角度: $\deg$ \deg
极限: $\lim_{x \to \infty}f(x)$ \lim_{x \to \infty}f(x)
上确界: $\sup M$ \sup M
下确界: $\inf M$ \inf M
行列式: $\det A$ \det A
维数: $\dim A$ \dim A
矩阵kernel: $\ker A$ \ker A
投影: $\Pr$ \Pr
同调群:$\hom$ \hom
复数的幅角: $\arg z$ \arg z
向下取整: $\lfloor x \rfloor$ \lfloor x \rfloor
向上取整: $\lceil x \rceil$ \lceil x \rceil
自定义函数: $\operatorname{function} x$ \operatorname{function} x

符号

运算符

$\pm$ \pm
$\mp$ \mp
$\dotplus$ \dotplus
$\times$ \times
$\div$ \div
$\frac{a}{b}$ \frac{a}{b}
$\divideontimes$ \divideontimes
$\backslash$ \backslash
$\cdot$ \cdot
$\ast$ \ast
$\circ$ \circ
$\bullet$ \bullet
$\boxplus$ \boxplus
$\boxminus$ \boxminus
$\boxtimes$ \boxtimes
$\boxdot$ \boxdot
$\oplus$ \oplus
$\ominus$ \ominus
$\otimes$ \otimes
$\oslash$ \oslash
$\odot$ \odot
$\bigoplus$ bigoplus
$\bigotimes$ \bigotimes
$\bigodot$ \bigodot

集合

${ }$ \{ \}
$\empty$ \empty
$\varnothing$ \varnothing
$\in$ \in
$\not\in$ \notin\not\in
$\ni$ \ni
$\notni$ \notni\not\ni
$\cap$ \cap
$\Cap$ \Cap
$\sqcap$ \sqcap
$\bigcap$ \bigcap
$\cup$ \cup
$\Cup$ \Cup
$\sqcup$ \sqcup
$\bigcup$ \bigcup
$\bigsqcup$ \bigscup
$\uplus$ \uplus
$\biguplus$ \biguplus
$\subset$ \subset
$\Subset$ \Subset
$\sqsubset$ \sqsubset
$\supset$ \supset
$\Supset$ \Supset
$\sqsupset$ \sqsupset
$\subseteq$ \subseteq
$\nsubseteq$ \nsubseteq
$\subsetneq$ \subsetneq
$\varsubsetneq$ \varsubsetneq
$\sqsubseteq$ \sqsubseteq
$\supseteq$ \supseteq
$\nsupseteq$ \nsupseteq
$\supsetneq$ \supsetneq
$\varsupsetneq$ \varsupsetneq
$\sqsupseteq$ \sqsupseteq
$\sqsupset$ \sqsupset
$\subseteqq$ \subseteqq
$\nsubseteqq$ \nsubseteqq
$\subsetneqq$ \subsetneqq
$\varsubsetneqq$ \varsubsetneqq
$\supseteqq$ \supseteqq
$\nsupseteqq$ \nsupseteqq
$\supsetneqq$ \supsetneqq
$\varsupsetneqq$ \varsupsetneqq

关系符号

$\ne$ \ne\neq
$\equiv$ \equiv
$\not\equiv$ \not\equiv
$\doteq$ \doteq
$\doteqdot$ \doteqdot
$\sim$ \sim
$\nsim$ \nsim
$\backsim$ \backsim
$\thicksim$ \thicksim
$\simeq$ \simeq
$\backsimeq$ \backsimeq
$\eqsim$ \eqsim
$\cong$ \cong
$\ncong$ \ncong
$\approx$ \approx
$\thickapprox$ \thickapprox
$\approxeq$ \approxeq
$\asymp$ \asymp
$\propto$ \propto
$\varpropto$ \varpropto
$\ngtr$ \ngtr
$\gg$ \gg
$\ggg$ \ggg
$\not\ggg$ \not\ggg
$\gtrdot$ \gtrdot
$\ngtr$ \ngtr
$\lneq$ \lneq
$\leqq$ \leqq
$\nleq$ \nleq
$\nleqq$ \nleqq
$\lneqq$ \lneqq
$\lvertneqq$ \lvertneqq
$\ge$ \ge
$\geq$ \geq
$\gneq$ \gneq
$\geqq$ \geqq
$\ngeq$ \ngeq
$\ngeqq$ \ngeqq
$\gneqq$ \gneqq
$\gvertneqq$ \gvertneqq

几何符号

$\parallel$ \parallel
$\nparallel$ \nparallel
$\shortparallel$ \shortparallel
$\nshortparallel$ nshortparallel
$\perp$ \perp
$\angle$ \angle
$\sphericalangle$ \sphericalangle
$\measuredangle$ \measuredangle
$45^\circ$ 45^\circ
$\Box$ \Box
$\blacksquare$ \blacksquare
$\diamond$ \diamond
$\Diamond$ \Diamond
$\lozenge$ \lozenge
$\blacklozenge$ \blacklozenge
$\bigstar$ \bigstar
$\bigcirc$ \bigcirc
$\triangle$ \triangle
$\bigtriangleup$ \bigtriangleup
$\bigtriangledown$ \bigtriangledown
$\vartriangle$ \vartriangle
$\triangledown$ \triangledown
$\blacktriangle$ \blacktriangle
$\blacktriangledown$ \blacktriangledown
$\blacktriangleleft$ \blacktriangleleft
$\blacktriangleright$ \blacktriangleright

逻辑符号

$\forall$ \forall
$\exists$ \exists
$\nexists$ \nexists
$\therefore$ \therefore
$\because$ \because
$\And$ \And
$\mid$ \mid
$\lor$ \lor\vee
$\land$ \land\wedge
$\bar{q}$ \bar{q}
$\overline{q}$ \overline{q}
$\lnot$ \lnot\neg
$\bot$ \bot
$\top$ \top
$\vdash$ \vdash
$\dashv$ \dashv
$\vDash$ \vDash
$\Vdash$ \Vdash
$\models$ \models
$\ulcorner$ \ulcorner
$\urcorner$ \urcorner
$\llcorner$ \llcorner
$\lrcorner$ \lrcorner

箭头 - arrow

$\rightarrow$ \rightarrow
$\nrightarrow$ \nrightarrow
$\longrightarrow$ \longrightarrow
$\Rightarrow$ \Rightarrow
$\nRightarrow$ \nRightarrow
$\Longrightarrow$ \Longrightarrow
$\leftarrow$ \leftarrow
$\nleftarrow$ n\leftarrow
$\longleftarrow$ \longleftarrow
$\Leftarrow$ \Leftarrow
$\nLeftarrow$ \nLeftarrow
$\Longleftarrow$ \Longleftarrow
$\leftrightarrow$ \leftrightarrow
$\nleftrightarrow$ \nleftrightarrow
$\Leftrightarrow$ \Leftrightarrow
$\nLeftrightarrow$ \nLeftrightarrow
$\longleftrightarrow$ \longleftrightarrow
$\iff$ iff
$\Longleftrightarrow$ \Longleftrightarrow
$\uparrow$ \uparrow
$\downarrow$ \downarrow
$\updownarrow$ \updownarrow
$\Uparrow$ \Uparrow
$\Downarrow$ \Downarrow
$\nearrow$ \nearrow
$\swarrow$ \swarrow
$\nwarrow$ \nwarrow
$\searrow$ \searrow
$\rightharpoonup$ \rightharpoonup
$\rightharpoondown$ \rightharpoondown
$\leftharpoonup$ \leftharpoonup
$\leftharpoondown$ \leftharpoondown
$\upharpoonleft$ \upharpoonleft
$\downharpoonleft$ \downharpoonleft
$\upharpoonright$ \upharpoonright
$\downharpoonright$ \downharpoonright
$\rightleftharpoons$ \rightleftharpoons
$\leftrightharpoons$ \leftrightharpoons
$\curvearrowleft$ \curvearrowleft
$\curvearrowright$ \curvearrowright
$\circlearrowleft$ \circlearrowleft
$\circlearrowright$ \circlearrowright
$\Lsh$ \Lsh
$\Rsh$ \Rsh
$\upuparrows$ \upuparrows
$\downdownarrows$ \downdownarrows
$\leftleftarrows$ \leftleftarrows
$\rightrightarrows$ \rightrightarrows
$\stackrel{text}{\longrightarrow}$ \stackrel{text}{\longrightarrow}
$\stackrel{text}{\longleftarrow}$ \stackrel{text}{\longleftarrow}
$\stackrel{text}{\downarrow}$ \stackrel{text}{\downarrow}
$\stackrel{text}{\uparrow}$ \stackrel{text}{\uparrow}

希腊字母

$\alpha$ \alpha
$\beta$ \beta
$\gamma$ \gamma
$\delta$ \delta
$\epsilon$ \epsilon
$\varepsilon$ \varepsilon
$\zeta$ \zeta
$\eta$ \eta
$\theta$ \theta
$\vartheta$ \vartheta
$\iota$ \iota
$\kappa$ \kappa
$\lambda$ \lambda
$\mu$ \mu
$\nu$ \nu
$\xi$ \xi
$\pi$ \pi
$\varpi$ \varpi
$\rho$ \rho
$\varrho$ \varrho
$\sigma$ \sigma
$\varsigma$ \varsigma
$\tau$ \tau
$\upsilon$ \upsilon
$\phi$ \phi
$\varphi$ \varphi
$\chi$ \chi
$\psi$ \psi
$\omega$ \omega
$\Gamma$ \Gamma
$\Delta$ \Delta
$\Theta$ \Theta
$\Lambda$ \Lambda
$\Xi$ \Xi
$\Pi$ \Pi
$\Sigma$ \Sigma
$\Upsilon$ \Upsilon
$\Phi$ \Phi
$\Psi$ \Psi
$\Omega$ \Omega

字体

黑板报粗体

只对大写字母有效

$\mathbb{FONT}$ \mathbb{FONT}

粗体

对大小写字母、希腊字母都有效

$\mathbf{FONT}$ \mathbf{FONT}
$\mathbf{font}$ \mathbf{font}
$\mathbf{\digamma\Theta\Nu\Tau}$ \mathbf{\digamma\Theta\Nu\Tau}

斜体

$\mathit{1234567890}$ \mathit{1234567890}
$\mathit{abcdefg}$ \mathit{abcdefg}
$\mathit{ABCDEFG}$ \mathit{ABCDEFG}

无衬线体

$\mathsf{ABCDEFG}$ \mathsf{ABCDEFG}

手写体

$\mathcal{ABCDEFG}$ \mathcal{ABCDEFG}

注释文本

text{} 在公式中添加文本: $\text{注释信息}$ \text{注释信息}

颜色

格式:

\color{颜色}{文本}

旧版浏览器支持:

$\color{gray}{text}$ \color{gray}{text}
$\color{silver}{text}$ \color{silver}{text}
$\color{blue}{text}$ \color{blue}{text}
$\color{yellow}{text}$ \color{yellow}{text}
$\color{red}{text}$ \color{red}{text}
$\color{lime}{text}$ \color{lime}{text}
$\color{green}{text}$ \color{green}{text}
$\color{fuchsia}{text}$ \color{fuchsia}{text}

较新浏览器支持 \color{#rgb}{text} 来自定义更多的颜色,#rgbr、g、b 分别可以是十六进制表示的 0~255 的数。

$\color{#ffdddd}{text}$ \color{#ffdddd}{text}
$\color{#ff8888}{text}$ \color{#ff8888}{text}
$\color{#ffaa11}{text}$ \color{#ffaa11}{text}
$\color{#ffccaa}{text}$ \color{#ffccaa}{text}
$\color{#ffdd66}{text}$ \color{#ffdd66}{text}
$\color{#ffbbee}{text}$ \color{#ffbbee}{text}
$\color{#aaaaff}{text}$ \color{#aaaaff}{text}
$\color{#7777ff}{text}$ \color{#7777ff}{text}
$\color{#66ccff}{text}$ \color{#66ccff}{text}
$\color{#99ccff}{text}$ \color{#99ccff}{text}
$\color{#00eeff}{text}$ \color{#00eeff}{text}
$\color{#bbffee}{text}$ \color{#bbffee}{text}
$\color{#99ff99}{text}$ \color{#99ff99}{text}
$\color{#44bb66}{text}$ \color{#44bb66}{text}
$\color{#44ff77}{text}$ \color{#44ff77}{text}
$\color{#0088ff}{text}$ \color{#0088ff}{text}
$\color{#22cc88}{text}$ \color{#22cc88}{text}
$\color{#777777}{text}$ \color{#777777}{text}
$\color{#aaaaaa}{text}$ \color{#aaaaaa}{text}
$\color{#f0f0f0}{text}$ \color{#f0f0f0}{text}

空格

  • \, 表示一个窄空格,$\frac{1}{6}$ M 的宽度
  • \\: 表示一个中等空格
  • \; 表示一个大空格
  • \quad 表示一个字母 M 宽度的空格
  • \qquad 表示两个 \quad 的宽度
  • \! 表示一个负的窄空格,缩进$\frac{1}{6}M$ 的宽度
  • \\ 表示换行

$$ \boxed{ \begin{array}{c|c} 窄空格 & a,b \ \hline 中等空格 & a: b \ \hline 大空格 & a;b \ \hline 字母M的宽度 & a\quad b \ \hline 两个M的宽度 & a\qquad b \ \hline 负窄空格 & a!b \end{array}\\ } $$

删除线

$\cancel{a + b}$ \cancel{a + b}
$\bcancel{a + b}$ \bcancel{a + b}
$\xcancel{a + b}$ \xcancel{a + b}
$\sout{a + b}$ \sout{a + b}

上下标与积分等

$x^2$ x^2

$x^{a + b}$ x^{a+b}

$a_1$ a_1

$a_{ij}$ a_{ij}

前置上下标: ${}_1^2!X_3^4$ {}_1^2\!x_3^4

正上方标记:$\sum\limits^n$ \sum\limits^n

正下方标记:$\min\limits_{i \leq k \leq j - 1}$ \min\limits_{i \leq k \leq j - 1}

导数: $x^\prime$ x^\primex'

导数点: $\dot{x}$ \dot{x}

向量:$\vec{x}$ \vec{x}

左长箭头: $\overleftarrow{a + b}$ \overleftarrow{a + b}

右长箭头: $\overrightarrow{a + b}$ \overrightarrow{a + b}

$\widehat{abc}$ \widehate{abc}

上弧: $\overset{\frown}{AB}$ \overset{\frown}{AB}

上划线: $\overline{abc}$ \overline{abc}

下划线: $\underline{abc}$ \underline{abc}

上括号: $\overbrace{1 + 2 + \cdots + 100}$ \overbrace{1 + 2 + \cdots + 100}

上括号示例: $\begin{matrix}5050\\overbrace{1 + 2 + \cdots + 100}\end{matrix}$ \begin{matrix}5050\\\overbrace{1 + 2 + \cdots + 100}\end{matrix}

$\overbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}^{n\ \text{个根号}}$ \overbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}^{n\ \text{个根号}}

下括号: $\underbrace{1 + 2 + \cdots + 100}$ \underbrace{1 + 2 + \cdots + 100}

下括号示例: $\begin{matrix}\underbrace{1 + 2 + \cdots + 100}\5050\end{matrix}$ \begin{matrix}\underbrace{1 + 2 + \cdots + 100}\\5050\end{matrix}

$\underbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}_{n\ \text{个根号}}$ $\underbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}_{n\ \text{个根号}}$

求和: $\sum_{k = 1}^{\infty} f(x)$ \sum_{k = 1}^{\infty} f(x)

求和: $\Sigma_{x = 1}^{\infty} f(x)$ \Sigma_{x = 1}^{t = \infty} f(x)

求积: $\prod_{i = 1}^{n} x_i$ \prod_{i = 1}^{n} x_i

上积: $\coprod_{i = 1}^{n} x_i$ \coprod_{i = 1}^{n} x_i

极限: $\lim_{x\to\infty} f(x)$ \lim_{x\to\infty} f(x)

积分: $\int_{a}^{b} f(x)dx$ \int_{a}^{b} f(x)dx

双重积分: $\iint_{a}^{b} f(x) , dx , dy$ \iint_{a}^{b} f(x) \, dx \, dy

三重积分: $\iiint_a^{b} f(x) , dx , dy , dz$ \iiint_a^{b} f(x) \, dx \, dy \, dz

闭合的曲线、曲面积分: $\oint_{C} x^2 , dx+ y , dy$ \oint_{C} x^2 \, dx+ y \, dy

分式

分数: $\frac{a + b}{c + d}$ \frac{a + b}{c + d}
$\frac{dx}{dy}$ \frac{dx}{dy}

连分式: $\cfrac{1}{2 + \cfrac{3}{4 + \cfrac{5}{6 + \cdots}}}$ \cfrac{1}{2 + \cfrac{3}{4 + \cfrac{5}{6 + \cdots}}}

$\cfrac{a_1}{b1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cdots}}}$ \cfrac{a_1}{b1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cdots}}}

二项式系数: $C_n^r = \dbinom{n}{r}$ C_n^r = \dbinom{n}{r}

矩阵

语法:

\begin{类型}
公式
\end{类型}

矩阵中 & 分隔元素,\\ 进行换行 横三点: $\cdots$ \cdots
竖三点: $\vdots$ \vdots
斜三点: $\ddots$ \ddots

无框矩阵 - matrix

$$ \begin{matrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix}$$

\begin{matrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{matrix}

行列式 - vmatrix

$$ \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{21} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{21} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}

范数矩阵 - Vmatrix

$$ \begin{Vmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,1} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{Vmatrix}$$

\begin{Vmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,1} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n,1} & a_{n,2} & \cdots & a_{n,n}
\end{Vmatrix}

小括号矩阵 - pmatrix

$$ \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}

大括号矩阵 - Bmatrix

$$ \begin{Bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{Bmatrix}$$

\begin{Bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}  
\end{Bmatrix}

方括号矩阵 - bmatrix

$$ \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{bmatrix}$$

\begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} 
\end{bmatrix}

边框 - boxed{}

$$ \begin{bmatrix} \boxed{-1} & 3 & 0 & 2 \\ 0 & \boxed{1} & 3 & 1 \\ 0 & 0 & 0 & \boxed{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

\begin{bmatrix}
\boxed{-1} & 3 & 0 & 2 \\
0 & \boxed{1} & 3 & 1 \\
0 & 0 & 0 & \boxed{2} \\
0 & 0 & 0 & 0
\end{bmatrix}\\

数组 - array

$$ \begin{array}{} a & b \\ c & d \end{array}$$

\begin{array}{}
a & b \\
c & d  
\end{array}

定界符

语法:

\left 符号
公式
\right 符号

竖线

$$ \left | \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right | $$

\left |
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right | 

小括号

$$ \left ( \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right ) $$

\left (
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right )

大括号

$$ \left { \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right }$$

\left \{
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right \}

注:{} 为特殊字符,无法直接使用,应使用 \{\} 来输出

方括号

$$ \left [ \begin{array}{} a_{11} & a_{12} \\ a_{13} & a_{14} \\ \end{array} \right ]$$

\left [
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right ]

分割线

实竖线

$$ \left [ \begin{array}{c|c|c|c|c} a_{11} & a_{12} & a_{13} & a_{14} & a_{15}\\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25}\\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]$$

\left [
\begin{array}{c|c|c|c|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15}\\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25}\\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55} 
\end{array}\\
\right ]

虚竖线

$$ \left [ \begin{array}{c:c:c:c:c} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]$$

\left [
\begin{array}{c:c:c:c:c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]\\

实横线 - \hline

$$ \left [ \begin{array}{} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ \hline a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ \hline a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ \hline a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ \hline a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]$$

\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]

虚横线 - \hdashline

$$ \left [ \begin{array}{} a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\ \hdashline a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\ \hdashline a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\ \hdashline a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\ \hdashline a_{51} & a_{52} & a_{53} & a_{54} & a_{55} \end{array} \right ]$$

\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hdashline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hdashline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hdashline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hdashline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]

应用 - 分块矩阵

$$ \left [ \begin{array}{cc:cc} 1 & 0 & 1 & -2 \\ 0 & 1 & 0 & 1 \\ \hdashline -1 & 2 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{array} \right ]$$

\left [
\begin{array}{cc:cc}
1 & 0 & 1 & -2 \\
0 & 1 & 0 & 1 \\
\hdashline
-1 & 2 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}
\right ]

应用 - 制作表格

$$ \boxed{ \begin{array}{c|c} 矩阵类型 & 关键字 \ \hline |A| & vmatrix \ \hline \parallel & Vmatrix \ \hline () & pmatrix \ \hline {} & Bmatrix \ \hline [\ ] & bmatrix \end{array} }$$

\boxed{
    \begin{array}{c|c}
    矩阵类型 & 关键字 \\ \hline
    |A| & vmatrix \\ \hline
    \parallel & Vmatrix \\ \hline
    () & pmatrix \\ \hline
    \{\} & Bmatrix \\ \hline
    [\ ] & bmatrix
    \end{array}
}

条件表达式,方程式

条件表达式 - cases

$$ f(x) = \begin{cases} \begin{aligned} \frac{\sin x}{|x|},x \ne 0 \\ 1,x = 0\\ \end{aligned} \end{cases}$$

f(x) =
\begin{cases}
\begin{aligned}
\frac{\sin x}{|x|},x \ne 0 \\
1,x = 0\\
\end{aligned}
\end{cases}

编号的方程式 - equation

$$ \begin{equation} z = (a+b)^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4. \end{equation}$$

\begin{equation}
z = (a+b)^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.
\end{equation}

多公式有编号 - align

$$ \begin{align} \nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{align}$$

\begin{align} 
\nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\
 \nabla \cdot \mathbf{B} &= 0 \\
 \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
 \nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
 \end{align}

多公式无编号 - align*

多公式无编号

$$ \begin{align*} E = mc^2 \\ e^{i\pi} + 1 = 0 \end{align*}$$

\begin{align*}
E = mc^2 \\
e^{i\pi} + 1 = 0
\end{align*}

单方程式多行写

$$ \begin{align*} z & = (a+b)^4 \\ & = (a+b)^2(a+b)^2 \\ & = (a^2+2ab+b^2)(a^2+2ab+b^2) \\ & = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4 \end{align*}$$

\begin{align*}
   z & = (a+b)^4 \\
     & = (a+b)^2(a+b)^2 \\
     & = (a^2+2ab+b^2)(a^2+2ab+b^2) \\
     & = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
 \end{align*}

$$ \begin{align*} & a_1 \wedge a_2 \wedge \cdots \wedge (a_i \wedge x) \wedge a_{i + 1} \wedge \cdots \wedge a_n\\ & = (a_1 \wedge a_2 \wedge \cdots \wedge a_i \wedge a_{i + 1} \wedge \cdots \wedge a_n) \wedge x\\ & = x \wedge x\\ & = 0 \end{align*} $$

\begin{align*}
& a_1 \wedge a_2 \wedge \cdots \wedge (a_i \wedge x) \wedge a_{i + 1} \wedge \cdots \wedge a_n\\
& = (a_1 \wedge a_2 \wedge \cdots \wedge a_i \wedge a_{i + 1} \wedge \cdots \wedge a_n) \wedge x\\
& = x \wedge x\\
& = 0
\end{align*}

自定义对齐方式

alignalign* 环境下,在公式左侧添加 & 可以使得公式左对齐,否则默认为居中对齐。 实际上将 & 的作用是为公式设置一个对齐点,多个公式的对齐点会在同一竖线上。

  • 将标记的 $=$$+$ 之间保持对齐,在对应 =+ 前标记 &

$$ \begin{align*} \phi(N) &= N - \frac{N}{p_1} - \frac{N}{p_2} \cdots - \frac{N}{p_k}\\ & +\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + \cdots\\ & +\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} \cdots\\ & +\cdots \\ & = N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2}\cdots \times \frac{p_m - 1}{p_m} \end{align*} $$

\begin{align*}
\phi(N) &= N - \frac{N}{p_1} - \frac{N}{p_2} \cdots - \frac{N}{p_k}\\
& +\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + \cdots\\
& +\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} \cdots\\
& +\cdots \\
& = N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2}\cdots \times \frac{p_m - 1}{p_m}
\end{align*}
  • $\cdots$ 之间保持对齐,在所有 \cdots 前标记 &

$$ \begin{align*} \phi(N) = N - \frac{N}{p_1} - \frac{N}{p_2} &\cdots - \frac{N}{p_k}\\ +\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + &\cdots\\ +\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} &\cdots\\ +&\cdots \\ = N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2} &\cdots \times \frac{p_m - 1}{p_m} \end{align*} $$

\begin{align*}
\phi(N) = N - \frac{N}{p_1} - \frac{N}{p_2} &\cdots - \frac{N}{p_k}\\
+\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + &\cdots\\
+\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} &\cdots\\
+ &\cdots \\
= N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2} &\cdots \times \frac{p_m - 1}{p_m}
\end{align*}

方程组

$$ \begin{cases} x + y - z = 0 \\ 2x - y + z = 2 \\ x + y + 2z = 4 \end{cases}$$

\begin{cases}
x + y - z = 0 \\
2x - y + z = 2 \\
x + y + 2z = 4
\end{cases}

或者

\left\{ \begin{aligned}
x + y - z = 0 \\
2x - y + z = 2 \\
x + y + 2z = 4
\end{aligned} \right.

\left\{ 公式 \right. 实现只有左边出现界定符大括号 {
\begin{aligned} 公式 \end{aligned} 实现公式右对齐

About

This repository contains markdown、html and pdf files for Latex 's quick list

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages