本文仅提供的能够在
$Markdown$ 中使用的$Latex$ 公式。
如何插入
- 行内公式:
$公式$ - 独立公式:
$$公式$$
a^x
\sqrt{x}
\sqrt[3]{x}
\sqrt[a]{x}
\exp x
\log x
\lg x
\ln x
\sin x
\cos x
\tan x
\cot x
\sec x
\csc x
\arcsin x
\arccos x
\arctan x
\sinh x
\cosh x
\tanh x
最小值: \min x
最大值: \max x
最大公约数: \gcd x
角度: \deg
极限: \lim_{x \to \infty}f(x)
上确界: \sup M
下确界: \inf M
行列式: \det A
维数: \dim A
矩阵kernel: \ker A
投影: \Pr
同调群:$\hom$ \hom
复数的幅角: \arg z
向下取整: \lfloor x \rfloor
向上取整: \lceil x \rceil
自定义函数: \operatorname{function} x
\pm
\mp
\dotplus
\times
\div
\frac{a}{b}
\divideontimes
\backslash
\cdot
\ast
\circ
\bullet
\boxplus
\boxminus
\boxtimes
\boxdot
\oplus
\ominus
\otimes
\oslash
\odot
bigoplus
\bigotimes
\bigodot
\{ \}
\empty
\varnothing
\in
\notin 或 \not\in
\ni
\notni 或 \not\ni
\cap
\Cap
\sqcap
\bigcap
\cup
\Cup
\sqcup
\bigcup
\bigscup
\uplus
\biguplus
\subset
\Subset
\sqsubset
\supset
\Supset
\sqsupset
\subseteq
\nsubseteq
\subsetneq
\varsubsetneq
\sqsubseteq
\supseteq
\nsupseteq
\supsetneq
\varsupsetneq
\sqsupseteq
\sqsupset
\subseteqq
\nsubseteqq
\subsetneqq
\varsubsetneqq
\supseteqq
\nsupseteqq
\supsetneqq
\varsupsetneqq
\ne 或 \neq
\equiv
\not\equiv
\doteq
\doteqdot
\sim
\nsim
\backsim
\thicksim
\simeq
\backsimeq
\eqsim
\cong
\ncong
\approx
\thickapprox
\approxeq
\asymp
\propto
\varpropto
\ngtr
\gg
\ggg
\not\ggg
\gtrdot
\ngtr
\lneq
\leqq
\nleq
\nleqq
\lneqq
\lvertneqq
\ge
\geq
\gneq
\geqq
\ngeq
\ngeqq
\gneqq
\gvertneqq
\parallel
\nparallel
\shortparallel
nshortparallel
\perp
\angle
\sphericalangle
\measuredangle
45^\circ
\Box
\blacksquare
\diamond
\Diamond
\lozenge
\blacklozenge
\bigstar
\bigcirc
\triangle
\bigtriangleup
\bigtriangledown
\vartriangle
\triangledown
\blacktriangle
\blacktriangledown
\blacktriangleleft
\blacktriangleright
\forall
\exists
\nexists
\therefore
\because
\And
\mid
\lor 或 \vee
\land 或 \wedge
\bar{q}
\overline{q}
\lnot 或 \neg
\bot
\top
\vdash
\dashv
\vDash
\Vdash
\models
\ulcorner
\urcorner
\llcorner
\lrcorner
\rightarrow
\nrightarrow
\longrightarrow
\Rightarrow
\nRightarrow
\Longrightarrow
\leftarrow
n\leftarrow
\longleftarrow
\Leftarrow
\nLeftarrow
\Longleftarrow
\leftrightarrow
\nleftrightarrow
\Leftrightarrow
\nLeftrightarrow
\longleftrightarrow
iff
\Longleftrightarrow
\uparrow
\downarrow
\updownarrow
\Uparrow
\Downarrow
\nearrow
\swarrow
\nwarrow
\searrow
\rightharpoonup
\rightharpoondown
\leftharpoonup
\leftharpoondown
\upharpoonleft
\downharpoonleft
\upharpoonright
\downharpoonright
\rightleftharpoons
\leftrightharpoons
\curvearrowleft
\curvearrowright
\circlearrowleft
\circlearrowright
\Lsh
\Rsh
\upuparrows
\downdownarrows
\leftleftarrows
\rightrightarrows
\stackrel{text}{\longrightarrow}
\stackrel{text}{\longleftarrow}
\stackrel{text}{\downarrow}
\stackrel{text}{\uparrow}
\alpha
\beta
\gamma
\delta
\epsilon
\varepsilon
\zeta
\eta
\theta
\vartheta
\iota
\kappa
\lambda
\mu
\nu
\xi
\pi
\varpi
\rho
\varrho
\sigma
\varsigma
\tau
\upsilon
\phi
\varphi
\chi
\psi
\omega
\Gamma
\Delta
\Theta
\Lambda
\Xi
\Pi
\Sigma
\Upsilon
\Phi
\Psi
\Omega
只对大写字母有效
\mathbb{FONT}
对大小写字母、希腊字母都有效
\mathbf{FONT}
\mathbf{font}
\mathbf{\digamma\Theta\Nu\Tau}
\mathit{1234567890}
\mathit{abcdefg}
\mathit{ABCDEFG}
\mathsf{ABCDEFG}
\mathcal{ABCDEFG}
用 text{} 在公式中添加文本: \text{注释信息}
格式:
\color{颜色}{文本}旧版浏览器支持:
\color{gray}{text}
\color{silver}{text}
\color{blue}{text}
\color{yellow}{text}
\color{red}{text}
\color{lime}{text}
\color{green}{text}
\color{fuchsia}{text}
较新浏览器支持 \color{#rgb}{text} 来自定义更多的颜色,#rgb 的 r、g、b 分别可以是十六进制表示的 0~255 的数。
\color{#ffdddd}{text}
\color{#ff8888}{text}
\color{#ffaa11}{text}
\color{#ffccaa}{text}
\color{#ffdd66}{text}
\color{#ffbbee}{text}
\color{#aaaaff}{text}
\color{#7777ff}{text}
\color{#66ccff}{text}
\color{#99ccff}{text}
\color{#00eeff}{text}
\color{#bbffee}{text}
\color{#99ff99}{text}
\color{#44bb66}{text}
\color{#44ff77}{text}
\color{#0088ff}{text}
\color{#22cc88}{text}
\color{#777777}{text}
\color{#aaaaaa}{text}
\color{#f0f0f0}{text}
-
\,表示一个窄空格,$\frac{1}{6}$ M 的宽度 -
\或\:表示一个中等空格 -
\;表示一个大空格 -
\quad表示一个字母 M 宽度的空格 -
\qquad表示两个 \quad 的宽度 -
\!表示一个负的窄空格,缩进$\frac{1}{6}M$ 的宽度 -
\\表示换行
\cancel{a + b}
\bcancel{a + b}
\xcancel{a + b}
\sout{a + b}
x^2
x^{a+b}
a_1
a_{ij}
前置上下标: {}_1^2\!x_3^4
正上方标记:$\sum\limits^n$ \sum\limits^n
正下方标记:$\min\limits_{i \leq k \leq j - 1}$ \min\limits_{i \leq k \leq j - 1}
导数: x^\prime 或 x'
导数点: \dot{x}
向量:$\vec{x}$ \vec{x}
左长箭头: \overleftarrow{a + b}
右长箭头: \overrightarrow{a + b}
\widehate{abc}
上弧: \overset{\frown}{AB}
上划线: \overline{abc}
下划线: \underline{abc}
上括号: \overbrace{1 + 2 + \cdots + 100}
上括号示例: $\begin{matrix}5050\\overbrace{1 + 2 + \cdots + 100}\end{matrix}$ \begin{matrix}5050\\\overbrace{1 + 2 + \cdots + 100}\end{matrix}
\overbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}^{n\ \text{个根号}}
下括号: \underbrace{1 + 2 + \cdots + 100}
下括号示例: $\begin{matrix}\underbrace{1 + 2 + \cdots + 100}\5050\end{matrix}$ \begin{matrix}\underbrace{1 + 2 + \cdots + 100}\\5050\end{matrix}
$\underbrace{\sqrt{2 + \sqrt{2 + \cdots + \sqrt{2}}}}_{n\ \text{个根号}}$
求和: \sum_{k = 1}^{\infty} f(x)
求和: \Sigma_{x = 1}^{t = \infty} f(x)
求积: \prod_{i = 1}^{n} x_i
上积: \coprod_{i = 1}^{n} x_i
极限: \lim_{x\to\infty} f(x)
积分: \int_{a}^{b} f(x)dx
双重积分: \iint_{a}^{b} f(x) \, dx \, dy
三重积分: \iiint_a^{b} f(x) \, dx \, dy \, dz
闭合的曲线、曲面积分: \oint_{C} x^2 \, dx+ y \, dy
分数:
\frac{a + b}{c + d}
\frac{dx}{dy}
连分式: \cfrac{1}{2 + \cfrac{3}{4 + \cfrac{5}{6 + \cdots}}}
\cfrac{a_1}{b1 + \cfrac{a_2}{b_2 + \cfrac{a_3}{b_3 + \cdots}}}
二项式系数: C_n^r = \dbinom{n}{r}
语法:
\begin{类型}
公式
\end{类型}矩阵中 & 分隔元素,\\ 进行换行
横三点: \cdots
竖三点: \vdots
斜三点: \ddots
\begin{matrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{matrix}\begin{vmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{21} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{vmatrix}\begin{Vmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,1} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n,1} & a_{n,2} & \cdots & a_{n,n}
\end{Vmatrix}\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}\begin{Bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{Bmatrix}\begin{bmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn}
\end{bmatrix}\begin{bmatrix}
\boxed{-1} & 3 & 0 & 2 \\
0 & \boxed{1} & 3 & 1 \\
0 & 0 & 0 & \boxed{2} \\
0 & 0 & 0 & 0
\end{bmatrix}\\\begin{array}{}
a & b \\
c & d
\end{array}语法:
\left 符号
公式
\right 符号\left |
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right | \left (
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right )\left \{
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right \}注:
{}为特殊字符,无法直接使用,应使用\{和\}来输出
\left [
\begin{array}{}
a_{11} & a_{12} \\
a_{13} & a_{14} \\
\end{array}
\right ]\left [
\begin{array}{c|c|c|c|c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15}\\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25}\\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35}\\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45}\\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}\\
\right ]\left [
\begin{array}{c:c:c:c:c}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]\\\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]\left [
\begin{array}{}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} \\
\hdashline
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} \\
\hdashline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} \\
\hdashline
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} \\
\hdashline
a_{51} & a_{52} & a_{53} & a_{54} & a_{55}
\end{array}
\right ]\left [
\begin{array}{cc:cc}
1 & 0 & 1 & -2 \\
0 & 1 & 0 & 1 \\
\hdashline
-1 & 2 & -1 & 0 \\
0 & -1 & 0 & -1
\end{array}
\right ]\boxed{
\begin{array}{c|c}
矩阵类型 & 关键字 \\ \hline
|A| & vmatrix \\ \hline
\parallel & Vmatrix \\ \hline
() & pmatrix \\ \hline
\{\} & Bmatrix \\ \hline
[\ ] & bmatrix
\end{array}
}f(x) =
\begin{cases}
\begin{aligned}
\frac{\sin x}{|x|},x \ne 0 \\
1,x = 0\\
\end{aligned}
\end{cases}\begin{equation}
z = (a+b)^4= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4.
\end{equation}\begin{align}
\nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\
\nabla \cdot \mathbf{B} &= 0 \\
\nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0\varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\end{align}\begin{align*}
E = mc^2 \\
e^{i\pi} + 1 = 0
\end{align*}\begin{align*}
z & = (a+b)^4 \\
& = (a+b)^2(a+b)^2 \\
& = (a^2+2ab+b^2)(a^2+2ab+b^2) \\
& = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4
\end{align*}\begin{align*}
& a_1 \wedge a_2 \wedge \cdots \wedge (a_i \wedge x) \wedge a_{i + 1} \wedge \cdots \wedge a_n\\
& = (a_1 \wedge a_2 \wedge \cdots \wedge a_i \wedge a_{i + 1} \wedge \cdots \wedge a_n) \wedge x\\
& = x \wedge x\\
& = 0
\end{align*}在 align 或 align* 环境下,在公式左侧添加 & 可以使得公式左对齐,否则默认为居中对齐。
实际上将 & 的作用是为公式设置一个对齐点,多个公式的对齐点会在同一竖线上。
- 将标记的
$=$ 和$+$ 之间保持对齐,在对应=和+前标记&
\begin{align*}
\phi(N) &= N - \frac{N}{p_1} - \frac{N}{p_2} \cdots - \frac{N}{p_k}\\
& +\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + \cdots\\
& +\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} \cdots\\
& +\cdots \\
& = N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2}\cdots \times \frac{p_m - 1}{p_m}
\end{align*}- 将
$\cdots$ 之间保持对齐,在所有\cdots前标记&
\begin{align*}
\phi(N) = N - \frac{N}{p_1} - \frac{N}{p_2} &\cdots - \frac{N}{p_k}\\
+\frac{N}{p_1p_2} + \frac{N}{p_1p_3} + &\cdots\\
+\frac{N}{p_1p_2p_3} - \frac{N}{p_2p_2p_4} &\cdots\\
+ &\cdots \\
= N \times \frac{p_1 - 1}{p_1} \times \frac{p_2 - 1}{p_2} &\cdots \times \frac{p_m - 1}{p_m}
\end{align*}\begin{cases}
x + y - z = 0 \\
2x - y + z = 2 \\
x + y + 2z = 4
\end{cases}或者
\left\{ \begin{aligned}
x + y - z = 0 \\
2x - y + z = 2 \\
x + y + 2z = 4
\end{aligned} \right.
\left\{ 公式 \right.实现只有左边出现界定符大括号{
\begin{aligned} 公式 \end{aligned}实现公式右对齐