-
Notifications
You must be signed in to change notification settings - Fork 1
21. GWAS
George Pacheco edited this page Aug 4, 2021
·
1 revision
Based on
Dataset III
, and through the use of gemma--v0.96 we performed _GWAS_s.
python ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP.dosage.py
gemma -g ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.dosage -gk 1 -p ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest.pheno -o PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest -maf 0.01
gemma -g ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.dosage -gk 1 -p ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering.pheno -o PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering -maf 0.01
gemma -lmm 4 -g ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.dosage -p ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest.pheno -a ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.SNPAnnotation -k ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest.cXX.txt -n 1 -o PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest
gemma -lmm 4 -g ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.dosage -p ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering.pheno -a ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.SNPAnnotation -k ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering.cXX.txt -n 1 -o PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeatheting
cut -f 1,2,3,13 ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest.assoc.txt | awk '{print $2"\t"$1"\t"$3"\t"$4}' | tail -n +2 | sort -k 4,4 > ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest.Edited.assoc.txt
cut -f 1,2,3,13 ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeatheting.assoc.txt | awk '{print $2"\t"$1"\t"$3"\t"$4}' | tail -n +2 | sort -k 4,4 > ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeatheting.Edited.assoc.txt
Permutates with original Gemma (permutation using one Gemma run including all chromosomes and scaffolds):
for B in `seq -w 1 100`
do
gemma -g ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.dosage -k ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest.cXX.txt -a ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.SNPAnnotation -o PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_${B} -p ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest.Permuted.pheno -n ${B} -lmm 4 -maf 0.01
done
for B in `seq -w 1 100`
do
gemma -g ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.dosage -k ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering.cXX.txt -a ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.SNPAnnotation -o PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_${B} -p ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering.Permuted.pheno -n ${B} -lmm 4 -maf 0.01
done
for i in PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_???.assoc.txt
do
cut -f 1,2,3,13 $i > cut${i%-.assoc.}
done
for i in PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_???.assoc.txt
do
cut -f 1,2,3,13 $i > cut${i%-.assoc.}
done
cp cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_001.assoc.txt cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_ALL.assoc.txt
cat cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_0{02..09}.assoc.txt | grep -v rs >> cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_ALL.assoc.txt
cat cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_0{10..99}.assoc.txt | grep -v rs >> cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_ALL.assoc.txt
cat cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_100.assoc.txt | grep -v rs >> cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest-BS_ALL.assoc.txt
cp cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_001.assoc.txt cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_ALL.assoc.txt
cat cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_0{02..09}.assoc.txt | grep -v rs >> cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_ALL.assoc.txt
cat cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_0{10..99}.assoc.txt | grep -v rs >> cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_ALL.assoc.txt
cat cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_100.assoc.txt | grep -v rs >> cutPBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_FootFeathering-BS_ALL.assoc.txt
cut -f 2 ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/output/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra_HeadCrest.Edited.assoc.txt | uniq -c | awk '{print "\"" $2 "\""}' | echo $(cat -) > PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.ChrLabels.txt
cat ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.beagle | tail -n +2 | awk '{split($1,a,"_"); print $1 "\t" a[3] "\t" a[1] "_" a[2]}' > ~/data/Pigeons/PBGP/PBGP--Analyses/PBGP--GWAS/PBGP--GoodSamples_WithWGSs_NoOddSamplesNoFerals_SNPCalling--Article--Ultra.SNPAnnotation
- 1. Data Access
- 2. Sequencing Quality Check
- 3. Demultiplexing
- 4. Creation of Mapping Targets
- 5. Filtering For Chimeric Reads
- 6. GBS Sexing
- 7. Read Processing & Mapping
- 8. Running Stats & Filtering of Bad Samples
- 9. Filtering of Possible Paralogs
- 10. Merging of Duplicate Cases
- 11. Investigation of Filtering of Possible Paralogs
- 12. Creation of Specific Datasets
- 13. Loci Information
- 14. Heterozygosity Calculation
- 15. Population Genetics Statistics
- 16. Phylogenetic Reconstruction
- 17. Multidimensional Scaling
- 18. Estimation of Individual Ancestries
- 19. Inference of Population Splits
- 20. Measuring of Linkage Disequilibrium
- 21. GWAS