Skip to content

Commit

Permalink
Add DeepSpeed MII backend to benchmark script (vllm-project#1649)
Browse files Browse the repository at this point in the history
  • Loading branch information
WoosukKwon authored Nov 14, 2023
1 parent 054072b commit 660a7fc
Showing 1 changed file with 71 additions and 12 deletions.
83 changes: 71 additions & 12 deletions benchmarks/benchmark_throughput.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,18 +6,21 @@
from typing import List, Optional, Tuple

import torch
from transformers import AutoModelForCausalLM, PreTrainedTokenizerBase
from transformers import (AutoModelForCausalLM, AutoTokenizer,
PreTrainedTokenizerBase)
from tqdm import tqdm

from vllm import LLM, SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer


def sample_requests(
dataset_path: str,
num_requests: int,
tokenizer: PreTrainedTokenizerBase,
fixed_output_len: Optional[int],
) -> List[Tuple[str, int, int]]:
if fixed_output_len is not None:
if fixed_output_len < 4:
raise ValueError("output_len too small")

# Load the dataset.
with open(dataset_path) as f:
dataset = json.load(f)
Expand All @@ -35,6 +38,8 @@ def sample_requests(
tokenized_dataset = []
for i in range(len(dataset)):
output_len = len(completion_token_ids[i])
if fixed_output_len is not None:
output_len = fixed_output_len
tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

# Filter out too long sequences.
Expand Down Expand Up @@ -66,6 +71,7 @@ def run_vllm(
trust_remote_code: bool,
dtype: str,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
model=model,
tokenizer=tokenizer,
Expand Down Expand Up @@ -160,14 +166,37 @@ def run_hf(
return end - start


def run_mii(
requests: List[Tuple[str, int, int]],
model: str,
tensor_parallel_size: int,
output_len: int,
) -> float:
from mii import pipeline
llm = pipeline(model, tensor_parallel=tensor_parallel_size)
prompts = [prompt for prompt, _, _ in requests]

start = time.perf_counter()
llm(prompts, max_new_tokens=output_len)
end = time.perf_counter()
return end - start


def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)

# Sample the requests.
tokenizer = get_tokenizer(args.tokenizer,
trust_remote_code=args.trust_remote_code)
requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer, trust_remote_code=args.trust_remote_code)
if args.dataset is None:
# Synthesize a prompt with the given input length.
prompt = "hi" * (args.input_len - 1)
requests = [(prompt, args.input_len, args.output_len)
for _ in range(args.num_prompts)]
else:
requests = sample_requests(args.dataset, args.num_prompts, tokenizer,
args.output_len)

if args.backend == "vllm":
elapsed_time = run_vllm(requests, args.model, args.tokenizer,
Expand All @@ -179,6 +208,9 @@ def main(args: argparse.Namespace):
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
args.use_beam_search, args.hf_max_batch_size,
args.trust_remote_code)
elif args.backend == "mii":
elapsed_time = run_mii(requests, args.model, args.tensor_parallel_size,
args.output_len)
else:
raise ValueError(f"Unknown backend: {args.backend}")
total_num_tokens = sum(prompt_len + output_len
Expand All @@ -191,12 +223,21 @@ def main(args: argparse.Namespace):
parser = argparse.ArgumentParser(description="Benchmark the throughput.")
parser.add_argument("--backend",
type=str,
choices=["vllm", "hf"],
choices=["vllm", "hf", "mii"],
default="vllm")
parser.add_argument("--dataset",
type=str,
required=True,
default=None,
help="Path to the dataset.")
parser.add_argument("--input-len",
type=int,
default=None,
help="Input prompt length for each request")
parser.add_argument("--output-len",
type=int,
default=None,
help="Output length for each request. Overrides the "
"output length from the dataset.")
parser.add_argument("--model", type=str, default="facebook/opt-125m")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument('--quantization',
Expand Down Expand Up @@ -231,6 +272,13 @@ def main(args: argparse.Namespace):
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
if args.dataset is None:
assert args.input_len is not None
assert args.output_len is not None
else:
assert args.input_len is None

if args.backend == "vllm":
if args.hf_max_batch_size is not None:
Expand All @@ -240,7 +288,18 @@ def main(args: argparse.Namespace):
raise ValueError("HF max batch size is required for HF backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.tokenizer is None:
args.tokenizer = args.model

elif args.backend == "mii":
if args.dtype != "auto":
raise ValueError("dtype must be auto for MII backend.")
if args.n != 1:
raise ValueError("n must be 1 for MII backend.")
if args.use_beam_search:
raise ValueError("Beam search is not supported for MII backend.")
if args.quantization is not None:
raise ValueError("Quantization is only for vLLM backend.")
if args.hf_max_batch_size is not None:
raise ValueError("HF max batch size is only for HF backend.")
if args.tokenizer != args.model:
raise ValueError("Tokenizer must be the same as the model for MII "
"backend.")
main(args)

0 comments on commit 660a7fc

Please sign in to comment.