Skip to content

Commit

Permalink
Merge pull request #3 from escorciav/master
Browse files Browse the repository at this point in the history
Update README.md
  • Loading branch information
frostinassiky authored Apr 22, 2020
2 parents 7f90286 + c78960b commit a669a75
Showing 1 changed file with 26 additions and 5 deletions.
31 changes: 26 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ This repo holds the codes of paper: "G-TAD: Sub-Graph Localization for Temporal
![G-TAD Overview](./gtad_overview.png)

## Update
30 Mar 2020: THUMOS14 feature is available!
30 Mar 2020: THUMOS14 feature is available!
[GooogleDrive](https://drive.google.com/drive/folders/10PGPMJ9JaTZ18uakPgl58nu7yuKo8M_k?usp=sharing),
[OneDrive](https://kaust-my.sharepoint.com/:f:/g/personal/xum_kaust_edu_sa/EgTwwUGf0O1Kug_A6ym-y_8BlEJ04_xPME9EFbAAKRPQNw?e=AVgHlW)

Expand All @@ -20,20 +20,20 @@ Temporal action detection is a fundamental yet challenging task in video underst

[Detail](https://sites.google.com/kaust.edu.sa/g-tad), [Video](https://www.youtube.com/watch?v=BlPxnDcykUo), [Arxiv](https://arxiv.org/abs/1911.11462).

## Dependencies
## Dependencies
* Python == 3.7
* Pytorch==1.1.0 or 1.3.0
* CUDA==10.0.130
* CUDNN==7.5.1_0

## Installation
Based on the idea of ROI Alignment from Mask-RCNN, we devoloped **SGAlign layer** in our implementation. You have to compile a short cuda code to run Algorithm 1 in our [paper](https://arxiv.org/abs/1911.11462).
Based on the idea of ROI Alignment from Mask-RCNN, we devoloped **SGAlign layer** in our implementation. You have to compile a short cuda code to run Algorithm 1 in our [paper](https://arxiv.org/abs/1911.11462).

1. Create conda environment
```shell script
conda env create -f env.yml
```
2. Install `Align1D2.2.0`
2. Install `Align1D2.2.0`
```shell script
cd gtad_lib
python setup.py install
Expand All @@ -42,6 +42,27 @@ Based on the idea of ROI Alignment from Mask-RCNN, we devoloped **SGAlign layer*
```shell script
python align.py
```

### Data setup

To reproduce the results in THUMOS14 without further changes:

1. Download the data from [GooogleDrive](https://drive.google.com/drive/folders/10PGPMJ9JaTZ18uakPgl58nu7yuKo8M_k?usp=sharing) or
[OneDrive](https://kaust-my.sharepoint.com/:f:/g/personal/xum_kaust_edu_sa/EgTwwUGf0O1Kug_A6ym-y_8BlEJ04_xPME9EFbAAKRPQNw?e=AVgHlW).

2. Place it into a folder named `TSN_pretrain_avepool_allfrms_hdf5` inside `data/thumos_feature`.

gtad
|── data
| ├── thumos_feature
| | |── TSN_pretrain_avepool_allfrms_hdf5
| | | |── flow_test.h5
| | | |── flow_val.h5
| | | |── rgb_test.h5
| | | |── rgb_val.h5

> You could also pass the folder containing the HDF5 files if the script admits the following argument `--feature_path`.

## Code Architecture

gtad # this repo
Expand All @@ -55,7 +76,7 @@ After downloading the dataset and setting up the envirionment, you can start fro

```shell script
python gtad_train.py
python gtad_inference.py
python gtad_inference.py
python gtad_postprocessing.py
```
or
Expand Down

0 comments on commit a669a75

Please sign in to comment.