-
Notifications
You must be signed in to change notification settings - Fork 9
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Paged GPTBigCode Support #30
Merged
Merged
Changes from all commits
Commits
Show all changes
9 commits
Select commit
Hold shift + click to select a range
9b8210c
added paged_gpt_bigcode and moved PagedMultiHeadAttention to modules.…
JRosenkranz 904b8a7
Update paged_gpt_bigcode.py
sahilsuneja1 c189789
Update paged_speculative_inference.py
sahilsuneja1 7a94bcb
Merge pull request #32 from sahilsuneja1/patch-2
JRosenkranz 3b1ca6a
Merge pull request #31 from sahilsuneja1/patch-3
JRosenkranz f56a1e2
added calico implementation for paged_llama
JRosenkranz 839c2d4
Update paged_llama.py for granite-3b-code
sahilsuneja1 51595c9
Update paged_llama.py
sahilsuneja1 c2285e4
Merge pull request #34 from sahilsuneja1/patch-4
JRosenkranz File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,383 @@ | ||
import math | ||
from dataclasses import dataclass | ||
from typing import Mapping, Optional | ||
|
||
import torch | ||
import torch.nn as nn | ||
from fms import models | ||
from fms.modules.feedforward import FeedForwardBlock | ||
from fms.utils import serialization | ||
from fms.utils.activation import str_to_activation | ||
from fms.utils.config import ModelConfig | ||
|
||
from fms_extras.modules.attention import PagedMultiHeadAttention | ||
from fms_extras.utils.cache.paged import ( | ||
PagedAttentionCacheData, | ||
PagedAttentionCacheDataLayer, | ||
) | ||
|
||
|
||
@dataclass | ||
class PagedGPTBigCodeConfig(ModelConfig): | ||
src_vocab_size: int = 49157 # This param default is based on https://huggingface.co/bigcode/gpt_bigcode-santacoder | ||
emb_dim: int = 2048 # This param default is based on https://huggingface.co/bigcode/gpt_bigcode-santacoder | ||
nheads: int = 12 | ||
nlayers: int = 12 | ||
pad_id: int = 0 | ||
max_pos: int = 512 | ||
hidden_grow_factor: float = 4.0 | ||
activation_fn: str = "gelu-tanh" | ||
p_dropout: float = 0.0 | ||
emb_dropout: float = 0.0 | ||
multiquery_attn: bool = True | ||
ln_eps: float = 1e-5 | ||
|
||
|
||
class PagedGPTBigCodeBlock(nn.Module): | ||
def __init__(self, config: PagedGPTBigCodeConfig): | ||
super().__init__() | ||
self.config = config | ||
|
||
self.ln = nn.LayerNorm(self.config.emb_dim, self.config.ln_eps) | ||
self.ff_ln = nn.LayerNorm(self.config.emb_dim, self.config.ln_eps) | ||
|
||
self.attn = PagedMultiHeadAttention( | ||
self.config.emb_dim, | ||
self.config.emb_dim // self.config.nheads, | ||
self.config.emb_dim // self.config.nheads, | ||
self.config.nheads, | ||
kvheads=1 if self.config.multiquery_attn else self.config.nheads, | ||
p_dropout=self.config.p_dropout, | ||
use_bias=True, | ||
) | ||
|
||
self.ff_sub_layer = FeedForwardBlock( | ||
self.config.emb_dim, | ||
hidden_grow_factor=self.config.hidden_grow_factor, | ||
activation_fn=str_to_activation(self.config.activation_fn), | ||
p_dropout=self.config.p_dropout, | ||
use_bias=True, | ||
) | ||
|
||
if self.config.p_dropout != 0: | ||
self.dropout = nn.Dropout(self.config.p_dropout) | ||
|
||
def forward( | ||
self, | ||
x: torch.Tensor, | ||
*, | ||
mask: Optional[torch.Tensor] = None, | ||
cache_data_layer: Optional[PagedAttentionCacheDataLayer] = None, | ||
use_cache: bool = False, | ||
is_causal_mask: bool = False, | ||
attn_algorithm: Optional[str] = None, | ||
): | ||
# first we do MHA and Add&Norm | ||
residual = x | ||
x = self.ln(x) | ||
# self attention | ||
x = self.attn( | ||
q=x, | ||
k=x, | ||
v=x, | ||
mask=mask, | ||
attn_algorithm=attn_algorithm, | ||
cache_data_layer=cache_data_layer, | ||
use_cache=use_cache, | ||
is_self=True, | ||
is_causal_mask=is_causal_mask, | ||
) | ||
|
||
cache = None | ||
if use_cache: | ||
x, cache = x | ||
if self.config.p_dropout != 0: | ||
x = self.dropout(x) | ||
# residual connection | ||
x = x + residual | ||
|
||
# then we do FF and Add&Norm | ||
residual = x | ||
x = self.ff_ln(x) | ||
x = self.ff_sub_layer(x) | ||
if self.config.p_dropout != 0: | ||
x = self.dropout(x) | ||
# another residual | ||
x = x + residual | ||
|
||
if use_cache: | ||
return x, cache | ||
else: | ||
return x | ||
|
||
|
||
class PagedGPTBigCodeHeadless(nn.Module): | ||
def __init__(self, config: PagedGPTBigCodeConfig): | ||
super().__init__() | ||
self.config = config | ||
|
||
self.layers = nn.ModuleList( | ||
[PagedGPTBigCodeBlock(self.config) for _ in range(self.config.nlayers)] | ||
) | ||
|
||
self.embedding = nn.Embedding(self.config.src_vocab_size, self.config.emb_dim) | ||
self.position_embedding = nn.Embedding(self.config.max_pos, self.config.emb_dim) | ||
|
||
self.dec_norm = nn.LayerNorm(self.config.emb_dim, eps=self.config.ln_eps) | ||
|
||
if self.config.emb_dropout: | ||
self.emb_dropout = nn.Dropout(self.config.emb_dropout) | ||
|
||
if self.config.p_dropout: | ||
self.dropout = nn.Dropout(self.config.p_dropout) | ||
|
||
def forward( | ||
self, | ||
x: torch.LongTensor, | ||
mask: Optional[torch.Tensor] = None, | ||
cache_data: Optional[PagedAttentionCacheData] = None, | ||
use_cache: bool = False, | ||
attn_algorithm: Optional[str] = None, | ||
): | ||
# Embed the given vocabulary indices using the given attention mask, with pre-/post-norm and dropout as specified | ||
# x_in: batch_size x seq_len | ||
# mask: batch_size x seq_len x seq_len | ||
# bias: nheads x seq_len x seq_len | ||
|
||
qlen = x.size(1) | ||
filled_cache = False | ||
|
||
# if we are using the cache, the key length needs to be extended with the past keys length | ||
if use_cache: | ||
if cache_data: | ||
filled_cache = cache_data.is_filled() | ||
|
||
# if mask is none, we need to specify causal mask | ||
if mask is None: | ||
# we are caching and can assume all 1s in the mask | ||
if use_cache and filled_cache and qlen == 1: | ||
# b x h x qlen x kvlen | ||
is_causal_mask = False | ||
else: | ||
is_causal_mask = True | ||
else: | ||
is_causal_mask = False | ||
|
||
x_emb = self.embedding(x) | ||
|
||
# if pad_id exists | ||
# is_pad will be a BoolTensor | ||
# otherwise pad_id will not be taken into account | ||
if self.config.pad_id is None: | ||
is_pad = torch.zeros_like(x, dtype=bool, device=x.device) | ||
else: | ||
is_pad = x == self.config.pad_id | ||
|
||
if cache_data is None or cache_data.position_ids is None: | ||
position_ids = ((~is_pad).cumsum(1) - 1).clamp(min=0) | ||
|
||
if cache_data is not None: | ||
cache_data.position_ids = position_ids | ||
else: | ||
position_ids = cache_data.position_ids | ||
|
||
# look up position embeddings | ||
position_out = self.position_embedding(position_ids) | ||
|
||
# zero out the associated position embeddings | ||
if self.config.pad_id is not None: | ||
position_out = position_out.mul(~is_pad.unsqueeze(-1)) | ||
|
||
# perform absolute position embedding | ||
x = x_emb + position_out | ||
|
||
# apply dropout to embeddings | ||
if self.config.emb_dropout: | ||
x = self.emb_dropout(x) | ||
|
||
# this is the output cache for all the decoder layers | ||
present_key_value_states = [] | ||
|
||
for i, layer in enumerate(self.layers): | ||
output = layer( | ||
x=x, | ||
mask=mask, | ||
cache_data_layer=None | ||
if cache_data is None | ||
else cache_data.get_layer(i), | ||
use_cache=use_cache, | ||
is_causal_mask=is_causal_mask, | ||
attn_algorithm=attn_algorithm, | ||
) | ||
|
||
if use_cache: | ||
x, present_key_value_state = output | ||
present_key_value_states.append(present_key_value_state) | ||
|
||
else: | ||
x = output | ||
|
||
dec_out = self.dec_norm(x) | ||
if self.config.p_dropout: | ||
dec_out = self.dropout(dec_out) | ||
|
||
return dec_out, present_key_value_states | ||
|
||
|
||
# Implements the decoder-only PagedGPTBigCodeModel | ||
class PagedGPTBigCode(nn.Module): | ||
def __init__( | ||
self, | ||
config: Optional[PagedGPTBigCodeConfig] = None, | ||
**kwargs, | ||
): | ||
super(PagedGPTBigCode, self).__init__() | ||
if config is not None: | ||
self.config = config | ||
else: | ||
self.config = PagedGPTBigCodeConfig() | ||
self.config = self.config.updated(**kwargs) | ||
|
||
self.base_model = PagedGPTBigCodeHeadless(self.config) | ||
self.head = nn.Linear( | ||
self.config.emb_dim, self.config.src_vocab_size, bias=False | ||
) | ||
|
||
# this model ties weights, so we tie here | ||
self.head.weight = self.base_model.embedding.weight | ||
|
||
self.reset_parameters() | ||
|
||
@classmethod | ||
def from_config(cls, config: PagedGPTBigCodeConfig) -> "PagedGPTBigCode": | ||
return cls(config) | ||
|
||
def get_config(self) -> PagedGPTBigCodeConfig: | ||
return self.config | ||
|
||
def reset_parameters(self): | ||
# Call reset_parameters for relevant sub-layers | ||
for m in self.modules(): | ||
if isinstance(m, PagedMultiHeadAttention) or isinstance( | ||
m, FeedForwardBlock | ||
): | ||
m.reset_parameters() | ||
|
||
def forward( | ||
self, | ||
x: torch.LongTensor, | ||
mask: Optional[torch.Tensor] = None, | ||
cache_data: Optional[PagedAttentionCacheData] = None, | ||
use_cache: bool = False, | ||
attn_algorithm: Optional[str] = None, | ||
return_embeds: bool = False, | ||
): | ||
embeds, cache = self.base_model( | ||
x, | ||
mask, | ||
cache_data=cache_data, | ||
use_cache=use_cache, | ||
attn_algorithm=attn_algorithm, | ||
) | ||
|
||
preds = self.head(embeds) | ||
|
||
out = [preds] | ||
if use_cache: | ||
out.append(cache) | ||
if return_embeds: | ||
out.append(embeds) | ||
|
||
if len(out) == 1: | ||
return out[0] | ||
else: | ||
return tuple(out) | ||
|
||
|
||
_santacoder_config = PagedGPTBigCodeConfig( | ||
src_vocab_size=49280, | ||
emb_dim=2048, | ||
nheads=16, | ||
nlayers=24, | ||
pad_id=-1, | ||
max_pos=2048, | ||
p_dropout=0.1, | ||
emb_dropout=0.1, | ||
) | ||
|
||
_13b_config = PagedGPTBigCodeConfig( | ||
src_vocab_size=50304, | ||
emb_dim=5632, | ||
nheads=44, | ||
nlayers=40, | ||
pad_id=50280, | ||
max_pos=8192, | ||
hidden_grow_factor=4.0, | ||
p_dropout=0.1, | ||
emb_dropout=0.1, | ||
ln_eps=1e-5, | ||
) | ||
_20b_config = PagedGPTBigCodeConfig( | ||
src_vocab_size=49152, | ||
emb_dim=6144, | ||
nheads=48, | ||
nlayers=52, | ||
pad_id=0, | ||
max_pos=8192, | ||
hidden_grow_factor=4.0, | ||
p_dropout=0.1, | ||
emb_dropout=0.1, | ||
ln_eps=1e-5, | ||
) | ||
|
||
|
||
_architecture_name = "paged_gpt_bigcode" | ||
|
||
|
||
def _gpt_bigcode_factory_factory(config): | ||
def factory(**kwargs): | ||
return PagedGPTBigCode(config, **kwargs) | ||
|
||
return factory | ||
|
||
|
||
models.register_model( | ||
_architecture_name, "santacoder", _gpt_bigcode_factory_factory(_santacoder_config) | ||
) | ||
models.register_model( | ||
_architecture_name, "ibm.13b", _gpt_bigcode_factory_factory(_13b_config) | ||
) | ||
models.register_model( | ||
_architecture_name, "ibm.20b", _gpt_bigcode_factory_factory(_20b_config) | ||
) | ||
|
||
|
||
def _hf_sd_to_fms_sd(hf_sd: Mapping) -> Mapping: | ||
import re | ||
|
||
replacements = [ | ||
("lm_head.weight", "head.weight"), | ||
(r"^transformer.wte.weight", "base_model.embedding.weight"), | ||
(r"^transformer.wpe.weight", "base_model.position_embedding.weight"), | ||
(r"^transformer.ln_f", "base_model.dec_norm"), | ||
(r"^transformer.h", "base_model.layers"), | ||
(r"attn\.c_attn", "attn.qkv_fused"), | ||
(r"attn\.c_proj", "attn.dense"), | ||
(r"mlp\.c_fc", "ff_sub_layer.w1"), | ||
(r"mlp\.c_proj", "ff_sub_layer.w2"), | ||
(r"ln_1", "ln"), | ||
(r"ln_2", "ff_ln"), | ||
] | ||
|
||
new_sd = {} | ||
for name, param in hf_sd.items(): | ||
new_name = name | ||
for pattern, repl in replacements: | ||
new_name = re.sub(pattern, repl, new_name) | ||
|
||
new_sd[new_name] = param | ||
|
||
return new_sd | ||
|
||
|
||
serialization.register_adapter(_architecture_name, "hf", _hf_sd_to_fms_sd) |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
the value for the
line
should be assigned to a variable first or something, otherwise this looks like it sayscache_data_layer=None