-
Notifications
You must be signed in to change notification settings - Fork 3
file to track brake/drag/power loss #19
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Draft
goob10000
wants to merge
2
commits into
main
Choose a base branch
from
issue-18-upload-brake-drag-power
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Draft
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,338 @@ | ||
| #!/usr/bin/env python3 | ||
|
|
||
| import argparse | ||
| import sys | ||
| from typing import Optional, Tuple, List | ||
|
|
||
| import numpy as np | ||
| import polars as pl | ||
| import matplotlib.pyplot as plt | ||
|
|
||
|
|
||
| # Column names | ||
| COL_TORQUE_DEMAND = "SME_THROTL_TorqueDemand" | ||
| COL_BUS_V = "SME_TEMP_DC_Bus_V" | ||
| COL_BUS_C = "SME_TEMP_BusCurrent" | ||
|
|
||
| COL_LAT = "VDM_GPS_Latitude" | ||
| COL_LON = "VDM_GPS_Longitude" | ||
| COL_SPEED_MPH = "VDM_GPS_SPEED" | ||
| COL_GPS_VALID = "VDM_GPS_VALID1" | ||
|
|
||
| COL_AX_G = "VDM_X_AXIS_ACCELERATION" | ||
| COL_AY_G = "VDM_Y_AXIS_ACCELERATION" | ||
|
|
||
| COL_BRAKE_VOLT = "ETC_STATUS_BRAKE_SENSE_VOLTAGE" | ||
| COL_BRAKES_F = "TMAIN_DATA_BRAKES_F" | ||
| COL_BRAKES_R = "TMAIN_DATA_BRAKES_R" | ||
| COL_BRAKE_FLAG = "SME_TRQSPD_Pedal_Brake" | ||
|
|
||
| BLUEMAX_GPS_SQUARE = ((-121.7330999, 38.5759097), (-121.7328352, 38.5757670)) | ||
|
|
||
|
|
||
| def mph_to_mps(x: pl.Expr) -> pl.Expr: | ||
| return x * 0.44704 | ||
|
|
||
|
|
||
| def infer_time_column(df: pl.DataFrame) -> Tuple[pl.DataFrame, str]: | ||
| """Find existing time column or create synthetic one.""" | ||
| candidates = [ | ||
| "Time", "time", "t", "Seconds", "seconds", | ||
| "Timestamp", "timestamp", "Time_s", "time_s", | ||
| "VDM_Time", "VDM_TIME", "VMD_Time", "VMD_TIME", | ||
| ] | ||
| for c in candidates: | ||
| if c in df.columns: | ||
| if df[c].dtype in (pl.Int64, pl.Int32, pl.Float64, pl.Float32, pl.UInt64, pl.UInt32): | ||
| sample = df.select(pl.col(c)).head(5000)[c].to_numpy() | ||
| if len(sample) >= 3: | ||
| diffs = np.diff(sample.astype(float)) | ||
| if np.nanmean(diffs >= 0) > 0.9: | ||
| return df, c | ||
|
|
||
| dt = 0.02 | ||
| df = df.with_row_index(name="_idx").with_columns((pl.col("_idx") * dt).alias("Time_s")).drop("_idx") | ||
| return df, "Time_s" | ||
|
|
||
|
|
||
| def add_lap_segmentation(df: pl.DataFrame, | ||
| lat_col: str, | ||
| lon_col: str, | ||
| time_col: str, | ||
| square: Tuple[Tuple[float, float], Tuple[float, float]], | ||
| gps_valid_col: Optional[str] = None, | ||
| min_lap_time_s: float = 10.0) -> pl.DataFrame: | ||
| (lon1, lat1), (lon2, lat2) = square | ||
| lon_min, lon_max = (min(lon1, lon2), max(lon1, lon2)) | ||
| lat_min, lat_max = (min(lat1, lat2), max(lat1, lat2)) | ||
|
|
||
| inside_expr = ( | ||
| (pl.col(lon_col) >= lon_min) & (pl.col(lon_col) <= lon_max) & | ||
| (pl.col(lat_col) >= lat_min) & (pl.col(lat_col) <= lat_max) | ||
| ) | ||
|
|
||
| if gps_valid_col and gps_valid_col in df.columns: | ||
| inside_expr = inside_expr & (pl.col(gps_valid_col) != 0) & pl.col(lat_col).is_not_null() & pl.col(lon_col).is_not_null() | ||
|
Member
Author
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Because of the varying time value of CAN data it may be better to fill in the data that's missing rather than just dropping nulls. I am curious though, what success have you had with this? |
||
| else: | ||
| inside_expr = inside_expr & pl.col(lat_col).is_not_null() & pl.col(lon_col).is_not_null() | ||
|
|
||
| df = df.with_columns(inside_expr.cast(pl.Int8).alias("_inside")) | ||
| df = df.with_columns([ | ||
| pl.col("_inside").shift(1).fill_null(0).alias("_inside_prev"), | ||
| (pl.col(time_col)).alias("_t"), | ||
| ]).with_columns([ | ||
| ((pl.col("_inside") == 1) & (pl.col("_inside_prev") == 0)).cast(pl.Int8).alias("_raw_cross") | ||
| ]) | ||
|
|
||
| t = df["_t"].to_numpy().astype(float) | ||
| raw = df["_raw_cross"].to_numpy().astype(int) | ||
|
|
||
| valid = np.zeros_like(raw, dtype=int) | ||
| last_cross_t = -1e18 | ||
| for i in range(len(raw)): | ||
| if raw[i] == 1 and (t[i] - last_cross_t) >= min_lap_time_s: | ||
| valid[i] = 1 | ||
| last_cross_t = t[i] | ||
|
|
||
| lap = np.cumsum(valid).astype(int) | ||
| df = df.with_columns([ | ||
| pl.Series("Lap", lap) | ||
| ]) | ||
|
|
||
| df = df.drop(["_inside", "_inside_prev", "_raw_cross", "_t"]) | ||
| return df | ||
|
|
||
|
|
||
| def add_track_distance_per_lap(df: pl.DataFrame, lat_col: str, lon_col: str, lap_col: str) -> pl.DataFrame: | ||
| df = df.with_columns([ | ||
| pl.col(lat_col).cast(pl.Float64), | ||
| pl.col(lon_col).cast(pl.Float64), | ||
| ]) | ||
|
|
||
| df = df.with_columns([ | ||
| pl.col(lat_col).mean().over(lap_col).alias("_lat0"), | ||
| ]) | ||
|
|
||
| df = df.with_columns([ | ||
| (111320.0 * (pl.col(lat_col) - pl.col("_lat0"))).alias("_y_m"), | ||
| (111320.0 * (pl.col(lon_col) - pl.col(lon_col).mean().over(lap_col)) * pl.col("_lat0").radians().cos()).alias("_x_m"), | ||
| ]) | ||
|
|
||
| df = df.with_columns([ | ||
| pl.col("_x_m").shift(1).over(lap_col).alias("_x_prev"), | ||
| pl.col("_y_m").shift(1).over(lap_col).alias("_y_prev"), | ||
| ]) | ||
|
|
||
| df = df.with_columns([ | ||
| (((pl.col("_x_m") - pl.col("_x_prev"))**2 + (pl.col("_y_m") - pl.col("_y_prev"))**2).sqrt()) | ||
| .fill_null(0.0) | ||
| .alias("ds_m") | ||
| ]).with_columns([ | ||
| pl.col("ds_m").cum_sum().over(lap_col).alias("s_m"), | ||
| ]) | ||
|
|
||
| df = df.with_columns([ | ||
| (pl.col("s_m") / pl.col("s_m").max().over(lap_col)).alias("s_norm") | ||
| ]) | ||
|
|
||
| df = df.drop(["_lat0", "_x_m", "_y_m", "_x_prev", "_y_prev"]) | ||
| return df | ||
|
|
||
|
|
||
| def add_loss_powers(df: pl.DataFrame, | ||
| speed_mps_col: str, | ||
| accel_mps2_col: str, | ||
| rho: float, | ||
| CdA: float, | ||
| mass_kg: float) -> pl.DataFrame: | ||
| df = df.with_columns([ | ||
| (0.5 * rho * CdA * (pl.col(speed_mps_col) ** 2)).alias("DragForce_N"), | ||
| (0.5 * rho * CdA * (pl.col(speed_mps_col) ** 3)).alias("DragPower_W"), | ||
| ]) | ||
|
|
||
| df = df.with_columns([ | ||
| pl.when(pl.col(accel_mps2_col) < 0) | ||
| .then((-mass_kg * pl.col(accel_mps2_col) * pl.col(speed_mps_col))) | ||
| .otherwise(0.0) | ||
| .alias("BrakePower_W") | ||
| ]) | ||
|
|
||
| df = df.with_columns([ | ||
| (pl.col("DragPower_W") + pl.col("BrakePower_W")).alias("TotalLossPower_W") | ||
| ]) | ||
| return df | ||
|
|
||
|
|
||
| def plot_multiple_laps_comparison(df: pl.DataFrame, lap_nums: List[int], metric_col: str, | ||
| lat_col: str, lon_col: str, title: str): | ||
| fig, ax = plt.subplots(figsize=(14, 10)) | ||
|
|
||
| colors = ['blue', 'green', 'red', 'orange', 'purple', 'brown', 'pink', 'gray'] | ||
| all_z = [] | ||
| lap_data = [] | ||
| for lap_num in lap_nums: | ||
| lap_df = ( | ||
| df.filter(pl.col("Lap") == lap_num) | ||
| .filter(pl.col(lat_col).is_not_null() & pl.col(lon_col).is_not_null()) | ||
| .filter((pl.col(lat_col) != 0) & (pl.col(lon_col) != 0)) | ||
| .sort("s_norm") # Sort by normalized distance for smooth line | ||
| ) | ||
|
|
||
| if lap_df.height < 5: | ||
| print(f"[plot_multiple_laps_comparison] Not enough GPS points for lap {lap_num}") | ||
| continue | ||
|
|
||
| x = lap_df[lon_col].to_numpy() | ||
| y = lap_df[lat_col].to_numpy() | ||
| z = lap_df[metric_col].to_numpy() / 1000.0 | ||
|
|
||
| all_z.extend(z[~np.isnan(z)]) | ||
| lap_data.append((lap_num, x, y, z)) | ||
|
|
||
| if not lap_data: | ||
| print("[plot_multiple_laps_comparison] No valid lap data to plot") | ||
| return | ||
|
|
||
| vmin = np.nanmin(all_z) if all_z else 0 | ||
| vmax = np.nanmax(all_z) if all_z else 1 | ||
|
|
||
| for idx, (lap_num, x, y, z) in enumerate(lap_data): | ||
| color = colors[idx % len(colors)] | ||
| sc = ax.scatter(x, y, c=z, s=8, alpha=0.7, cmap='viridis', | ||
| vmin=vmin, vmax=vmax, label=f'Lap {lap_num}') | ||
| ax.plot(x, y, color=color, alpha=0.3, linewidth=1, linestyle='--') | ||
|
|
||
| plt.colorbar(sc, ax=ax, label=f"{metric_col} (kW)") | ||
|
|
||
| ax.set_xlabel("Longitude") | ||
| ax.set_ylabel("Latitude") | ||
| ax.set_title(title) | ||
| ax.set_aspect("equal", adjustable="box") | ||
| ax.grid(True, alpha=0.3) | ||
| ax.legend(loc='best') | ||
| plt.tight_layout() | ||
| plt.show() | ||
|
|
||
|
|
||
| def quick_lap_stats(df: pl.DataFrame, time_col: str): | ||
| laps = df.select(pl.col("Lap").max().alias("max_lap"))["max_lap"][0] | ||
| if laps is None or laps <= 0: | ||
| print("[quick_lap_stats] No laps found (Lap column <= 0).") | ||
| return | ||
|
|
||
| lap_times = ( | ||
| df.filter(pl.col("Lap") > 0) | ||
| .group_by("Lap") | ||
| .agg([ | ||
| pl.min(time_col).alias("t0"), | ||
| pl.max(time_col).alias("t1"), | ||
| pl.count().alias("rows"), | ||
| ]) | ||
| .with_columns((pl.col("t1") - pl.col("t0")).alias("lap_time_s")) | ||
| .sort("Lap") | ||
| ) | ||
| print("\nLap summary (first 15):") | ||
| print(lap_times.head(15)) | ||
| print("\nLap time stats:") | ||
| print(lap_times.select([ | ||
| pl.count().alias("lap_count"), | ||
| pl.mean("lap_time_s").alias("mean_s"), | ||
| pl.median("lap_time_s").alias("median_s"), | ||
| pl.min("lap_time_s").alias("min_s"), | ||
| pl.max("lap_time_s").alias("max_s"), | ||
| ])) | ||
| print() | ||
|
|
||
|
|
||
| def main(): | ||
| ap = argparse.ArgumentParser() | ||
| ap.add_argument("--file", required=True, help="Path to parquet file") | ||
| ap.add_argument("--CdA", type=float, default=0.7, help="Drag Cd*A (m^2)") | ||
| ap.add_argument("--rho", type=float, default=1.225, help="Air density kg/m^3") | ||
| ap.add_argument("--mass", type=float, default=300.0, help="Vehicle mass kg") | ||
| ap.add_argument("--min_lap_time", type=float, default=10.0, help="Min time between lap triggers (s)") | ||
| args = ap.parse_args() | ||
|
|
||
| print(f"Loading: {args.file}") | ||
| df = pl.read_parquet(args.file) | ||
|
|
||
| required = [COL_LAT, COL_LON, COL_SPEED_MPH, COL_AX_G] | ||
| missing = [c for c in required if c not in df.columns] | ||
| if missing: | ||
| print("ERROR: Missing required columns:") | ||
| for c in missing: | ||
| print(" -", c) | ||
| print("\nAvailable columns sample:", df.columns[:30], "...") | ||
| sys.exit(1) | ||
|
|
||
| df, time_col = infer_time_column(df) | ||
| print(f"Using time column: {time_col}") | ||
|
|
||
| if COL_GPS_VALID in df.columns: | ||
| df = df.filter((pl.col(COL_GPS_VALID) != 0) & (pl.col(COL_LAT) != 0) & (pl.col(COL_LON) != 0)) | ||
| else: | ||
| df = df.filter((pl.col(COL_LAT) != 0) & (pl.col(COL_LON) != 0)) | ||
|
|
||
| df = df.with_columns([ | ||
| mph_to_mps(pl.col(COL_SPEED_MPH).cast(pl.Float64)).alias("Speed_mps"), | ||
| (pl.col(COL_AX_G).cast(pl.Float64) * 9.81).alias("Ax_mps2"), | ||
| ]) | ||
|
|
||
| print("Segmenting laps (GPS gate)...") | ||
| df = add_lap_segmentation( | ||
| df, | ||
| lat_col=COL_LAT, | ||
| lon_col=COL_LON, | ||
| time_col=time_col, | ||
| square=BLUEMAX_GPS_SQUARE, | ||
| gps_valid_col=COL_GPS_VALID if COL_GPS_VALID in df.columns else None, | ||
| min_lap_time_s=args.min_lap_time | ||
| ) | ||
|
|
||
| quick_lap_stats(df, time_col) | ||
|
|
||
| print("Computing distance along lap...") | ||
| df = add_track_distance_per_lap(df, lat_col=COL_LAT, lon_col=COL_LON, lap_col="Lap") | ||
|
|
||
| print("Computing drag/brake/total loss powers...") | ||
| df = add_loss_powers( | ||
| df, | ||
| speed_mps_col="Speed_mps", | ||
| accel_mps2_col="Ax_mps2", | ||
| rho=args.rho, | ||
| CdA=args.CdA, | ||
| mass_kg=args.mass | ||
| ) | ||
|
|
||
| # ======================================================================== | ||
| # LAP COMPARISON CONFIGURATION | ||
| # ======================================================================== | ||
| # To change which laps are compared, modify the list below. | ||
| # Examples: | ||
| # comparison_laps = [1, 2, 5] # Compare laps 1, 2, and 5 | ||
| # comparison_laps = [3, 4, 6, 7] # Compare laps 3, 4, 6, and 7 | ||
| # comparison_laps = [1, 5, 10] # Compare laps 1, 5, and 10 | ||
| # comparison_laps = list(range(1, 6)) # Compare laps 1 through 5 | ||
| # ======================================================================== | ||
| comparison_laps = [1, 2, 5] # <-- EDIT THIS LIST TO CHANGE WHICH LAPS ARE COMPARED | ||
|
|
||
| lap_str = ", ".join(map(str, comparison_laps)) | ||
| print(f"Generating comparison plots for laps {lap_str}...") | ||
| plot_multiple_laps_comparison( | ||
| df, comparison_laps, "BrakePower_W", COL_LAT, COL_LON, | ||
| title=f"Lap Comparison: BrakePower_W on Track (kW) - Laps {lap_str}" | ||
| ) | ||
| plot_multiple_laps_comparison( | ||
| df, comparison_laps, "DragPower_W", COL_LAT, COL_LON, | ||
| title=f"Lap Comparison: DragPower_W on Track (kW) - Laps {lap_str}" | ||
| ) | ||
| plot_multiple_laps_comparison( | ||
| df, comparison_laps, "TotalLossPower_W", COL_LAT, COL_LON, | ||
| title=f"Lap Comparison: TotalLossPower_W on Track (kW) - Laps {lap_str}" | ||
| ) | ||
|
|
||
| print("Done.") | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| main() | ||
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Where does this fixed time value come from?