Skip to content

Commit

Permalink
Add resnet101 and resnet152
Browse files Browse the repository at this point in the history
  • Loading branch information
flyyufelix committed Apr 14, 2017
1 parent b5f280b commit 61a7ab0
Show file tree
Hide file tree
Showing 4 changed files with 537 additions and 2 deletions.
5 changes: 4 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,9 @@
* VGG19 - `vgg19.py`
* GoogLeNet (InceptionV1) - `googlenet.py`
* InceptionV3 - `inception_v3.py`
* ResNet - `resnet.py`
* InceptionV4 - `inception_v4.py`
* ResNet-50 - `resnet_50.py`
* ResNet-101 - `resnet_101.py`
* ResNet-152 - `resnet_152.py`

Download the ImageNet pretrained data into the `cache` directory by following the link provided in the model files.
265 changes: 265 additions & 0 deletions resnet_101.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,265 @@
# -*- coding: utf-8 -*-

import cv2
import numpy as np
import copy

from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Dropout, Flatten, merge, Reshape, Activation, Lambda, GlobalAveragePooling2D, Merge
from keras.optimizers import SGD
from keras.layers.normalization import BatchNormalization
from keras.models import Model
from keras import initializations
from keras.engine import Layer, InputSpec
from keras import backend as K

import sys
sys.setrecursionlimit(3000)

class Scale(Layer):
'''Learns a set of weights and biases used for scaling the input data.
the output consists simply in an element-wise multiplication of the input
and a sum of a set of constants:
out = in * gamma + beta,
where 'gamma' and 'beta' are the weights and biases larned.
# Arguments
axis: integer, axis along which to normalize in mode 0. For instance,
if your input tensor has shape (samples, channels, rows, cols),
set axis to 1 to normalize per feature map (channels axis).
momentum: momentum in the computation of the
exponential average of the mean and standard deviation
of the data, for feature-wise normalization.
weights: Initialization weights.
List of 2 Numpy arrays, with shapes:
`[(input_shape,), (input_shape,)]`
beta_init: name of initialization function for shift parameter
(see [initializations](../initializations.md)), or alternatively,
Theano/TensorFlow function to use for weights initialization.
This parameter is only relevant if you don't pass a `weights` argument.
gamma_init: name of initialization function for scale parameter (see
[initializations](../initializations.md)), or alternatively,
Theano/TensorFlow function to use for weights initialization.
This parameter is only relevant if you don't pass a `weights` argument.
'''
def __init__(self, weights=None, axis=-1, momentum = 0.9, beta_init='zero', gamma_init='one', **kwargs):
self.momentum = momentum
self.axis = axis
self.beta_init = initializations.get(beta_init)
self.gamma_init = initializations.get(gamma_init)
self.initial_weights = weights
super(Scale, self).__init__(**kwargs)

def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
shape = (int(input_shape[self.axis]),)

self.gamma = self.gamma_init(shape, name='{}_gamma'.format(self.name))
self.beta = self.beta_init(shape, name='{}_beta'.format(self.name))
self.trainable_weights = [self.gamma, self.beta]

if self.initial_weights is not None:
self.set_weights(self.initial_weights)
del self.initial_weights

def call(self, x, mask=None):
input_shape = self.input_spec[0].shape
broadcast_shape = [1] * len(input_shape)
broadcast_shape[self.axis] = input_shape[self.axis]

out = K.reshape(self.gamma, broadcast_shape) * x + K.reshape(self.beta, broadcast_shape)
return out

def get_config(self):
config = {"momentum": self.momentum, "axis": self.axis}
base_config = super(Scale, self).get_config()
return dict(list(base_config.items()) + list(config.items()))

def identity_block(input_tensor, kernel_size, filters, stage, block):
'''The identity_block is the block that has no conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the nb_filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
'''
eps = 1.1e-5
nb_filter1, nb_filter2, nb_filter3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
scale_name_base = 'scale' + str(stage) + block + '_branch'

x = Convolution2D(nb_filter1, 1, 1, name=conv_name_base + '2a', bias=False)(input_tensor)
x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2a')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2a')(x)
x = Activation('relu', name=conv_name_base + '2a_relu')(x)

x = ZeroPadding2D((1, 1), name=conv_name_base + '2b_zeropadding')(x)
x = Convolution2D(nb_filter2, kernel_size, kernel_size,
name=conv_name_base + '2b', bias=False)(x)
x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2b')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2b')(x)
x = Activation('relu', name=conv_name_base + '2b_relu')(x)

x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c', bias=False)(x)
x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2c')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2c')(x)

x = merge([x, input_tensor], mode='sum', name='res' + str(stage) + block)
x = Activation('relu', name='res' + str(stage) + block + '_relu')(x)
return x

def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)):
'''conv_block is the block that has a conv layer at shortcut
# Arguments
input_tensor: input tensor
kernel_size: defualt 3, the kernel size of middle conv layer at main path
filters: list of integers, the nb_filters of 3 conv layer at main path
stage: integer, current stage label, used for generating layer names
block: 'a','b'..., current block label, used for generating layer names
Note that from stage 3, the first conv layer at main path is with subsample=(2,2)
And the shortcut should have subsample=(2,2) as well
'''
eps = 1.1e-5
nb_filter1, nb_filter2, nb_filter3 = filters
conv_name_base = 'res' + str(stage) + block + '_branch'
bn_name_base = 'bn' + str(stage) + block + '_branch'
scale_name_base = 'scale' + str(stage) + block + '_branch'

x = Convolution2D(nb_filter1, 1, 1, subsample=strides,
name=conv_name_base + '2a', bias=False)(input_tensor)
x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2a')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2a')(x)
x = Activation('relu', name=conv_name_base + '2a_relu')(x)

x = ZeroPadding2D((1, 1), name=conv_name_base + '2b_zeropadding')(x)
x = Convolution2D(nb_filter2, kernel_size, kernel_size,
name=conv_name_base + '2b', bias=False)(x)
x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2b')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2b')(x)
x = Activation('relu', name=conv_name_base + '2b_relu')(x)

x = Convolution2D(nb_filter3, 1, 1, name=conv_name_base + '2c', bias=False)(x)
x = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '2c')(x)
x = Scale(axis=bn_axis, name=scale_name_base + '2c')(x)

shortcut = Convolution2D(nb_filter3, 1, 1, subsample=strides,
name=conv_name_base + '1', bias=False)(input_tensor)
shortcut = BatchNormalization(epsilon=eps, axis=bn_axis, name=bn_name_base + '1')(shortcut)
shortcut = Scale(axis=bn_axis, name=scale_name_base + '1')(shortcut)

x = merge([x, shortcut], mode='sum', name='res' + str(stage) + block)
x = Activation('relu', name='res' + str(stage) + block + '_relu')(x)
return x

def resnet101_model(img_rows, img_cols, color_type=1, num_class=None):
"""
Resnet 100 Model for Keras
Model Schema and layer naming follow that of the original Caffe implementation
https://github.com/KaimingHe/deep-residual-networks
ImageNet Pretrained Weights
Theano: https://drive.google.com/file/d/0Byy2AcGyEVxfdUV1MHJhelpnSG8/view?usp=sharing
TensorFlow: https://drive.google.com/file/d/0Byy2AcGyEVxfTmRRVmpGWDczaXM/view?usp=sharing
Parameters:
img_rows, img_cols - resolution of inputs
channel - 1 for grayscale, 3 for color
num_class - number of class labels for our classification task
"""
eps = 1.1e-5

# Handle Dimension Ordering for different backends
global bn_axis
if K.image_dim_ordering() == 'tf':
bn_axis = 3
img_input = Input(shape=(224, 224, 3), name='data')
else:
bn_axis = 1
img_input = Input(shape=(3, 224, 224), name='data')

x = ZeroPadding2D((3, 3), name='conv1_zeropadding')(img_input)
x = Convolution2D(64, 7, 7, subsample=(2, 2), name='conv1', bias=False)(x)
x = BatchNormalization(epsilon=eps, axis=bn_axis, name='bn_conv1')(x)
x = Scale(axis=bn_axis, name='scale_conv1')(x)
x = Activation('relu', name='conv1_relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), name='pool1')(x)

x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
for i in range(1,3):
x = identity_block(x, 3, [128, 128, 512], stage=3, block='b'+str(i))

x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
for i in range(1,23):
x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b'+str(i))

x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

x_fc = AveragePooling2D((7, 7), name='avg_pool')(x)
x_fc = Flatten()(x_fc)
x_fc = Dense(1000, activation='softmax', name='fc1000')(x_fc)

model = Model(img_input, x_fc)

if K.image_dim_ordering() == 'th':
# Use pre-trained weights for Theano backend
weights_path = 'cache/resnet101_weights_th.h5'
else:
# Use pre-trained weights for Tensorflow backend
weights_path = 'cache/resnet101_weights_tf.h5'

model.load_weights(weights_path, by_name=True)

# Truncate and replace softmax layer for transfer learning
# Cannot use model.layers.pop() since model is not of Sequential() type
# The method below works since pre-trained weights are stored in layers but not in the model
x_newfc = AveragePooling2D((7, 7), name='avg_pool')(x)
x_newfc = Flatten()(x_newfc)
x_newfc = Dense(num_class, activation='softmax', name='fc8')(x_newfc)

model = Model(img_input, x_newfc)

# Learning rate is changed to 0.001
sgd = SGD(lr=1e-3, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy'])

return model

if __name__ == '__main__':

# Fine-tune Example
img_rows, img_cols = 224, 224 # Resolution of inputs
channel = 3
num_class = 10
batch_size = 16
nb_epoch = 3

# TODO: Load training and validation sets
X_train, X_valid, Y_train, Y_valid = load_data()

# Load our model
model = resnet101_model(img_rows, img_cols, channel, num_class)

# Start Fine-tuning
model.fit(train_data, test_data,
batch_size=batch_size,
nb_epoch=nb_epoch,
shuffle=True,
verbose=1,
validation_data=(X_valid, Y_valid),
)

# Make predictions
predictions_valid = model.predict(X_valid, batch_size=batch_size, verbose=1)

# Cross-entropy loss score
score = log_loss(Y_valid, predictions_valid)
Loading

0 comments on commit 61a7ab0

Please sign in to comment.