Skip to content

Commit

Permalink
Refractored DirectivitData: radiation characteristics are computed vi…
Browse files Browse the repository at this point in the history
…a properties
  • Loading branch information
QimingFlex committed Jan 3, 2025
1 parent 3bd312e commit fc2a5c8
Show file tree
Hide file tree
Showing 6 changed files with 128 additions and 92 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Added an option to simulate plane wave propagation at fixed angles by setting parameter `angular_spec=FixedAngleSpec()` when defining a `PlaneWave` source.
- The universal `tidy3d.web` can now also be used to handle `ModeSolver` simulations.
- Support for differentiation with respect to `PolySlab.slab_bounds`.
- `DirectivityMonitor` can now be used to decompose fields into circular polarization states.

### Changed
- Priority is given to `snapping_points` in `GridSpec` when close to structure boundaries, which reduces the chance of them being skipped.
Expand All @@ -51,6 +52,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- `estimate_cost` is now called at the end of every `web.upload` call.
- Internal refactor of adjoint shape gradients using `GradientSurfaceMesh`.
- Enhanced progress bar display in batch operations with better formatting, colors, and status tracking.
- The behavior of `DirectivityData` was changed, so that only far fields and flux are stored. Radiation characteristics (e.g., directivity, axial ratio) can be accessed through properties.

### Fixed
- Significant speedup for field projection computations.
Expand Down
24 changes: 7 additions & 17 deletions tests/test_data/test_data_arrays.py
Original file line number Diff line number Diff line change
Expand Up @@ -184,21 +184,16 @@ def make_mode_index_data_array():
return td.ModeIndexDataArray(values, coords=dict(f=FS, mode_index=MODE_INDICES))


def make_far_field_data_array():
values = (1 + 1j) * np.random.random((len(PD), len(THETAS), len(PHIS), len(FS)))
return td.FieldProjectionAngleDataArray(values, coords=dict(r=PD, theta=THETAS, phi=PHIS, f=FS))


def make_flux_data_array():
values = np.random.random(len(FS))
return td.FluxDataArray(values, coords=dict(f=FS))


def make_directivity_data_array():
values = np.random.random((len(PD), len(THETAS), len(PHIS), len(FS)))
return td.DirectivityDataArray(values, coords=dict(r=PD, theta=THETAS, phi=PHIS, f=FS))


def make_axial_ratio_data_array():
values = np.random.random((len(PD), len(THETAS), len(PHIS), len(FS)))
return td.AxialRatioDataArray(values, coords=dict(r=PD, theta=THETAS, phi=PHIS, f=FS))


def make_flux_time_data_array():
values = np.random.random(len(TS))
return td.FluxTimeDataArray(values, coords=dict(t=TS))
Expand Down Expand Up @@ -261,13 +256,8 @@ def test_flux_time_data_array():
data = data.interp(t=1e-13)


def test_directivity_data_array():
data = make_directivity_data_array()
data = data.sel(f=1e14, phi=0)


def test_axial_ratio_data_array():
data = make_axial_ratio_data_array()
def test_far_field_data_array():
data = make_far_field_data_array()
data = data.sel(f=1e14, phi=0)


Expand Down
16 changes: 10 additions & 6 deletions tests/test_data/test_monitor_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,9 +33,8 @@
PERMITTIVITY_MONITOR,
SIM,
SIM_SYM,
make_axial_ratio_data_array,
make_diffraction_data_array,
make_directivity_data_array,
make_far_field_data_array,
make_flux_data_array,
make_flux_time_data_array,
make_mode_amps_data_array,
Expand All @@ -54,9 +53,6 @@
GRID_CORRECTION = FreqModeDataArray(
1 + 0.01 * np.random.rand(*N_COMPLEX.shape), coords=N_COMPLEX.coords
)
DIRECTIVITY = make_directivity_data_array()
AXIALRATIO = make_axial_ratio_data_array()

""" Make the montor data """


Expand Down Expand Up @@ -190,8 +186,16 @@ def make_flux_data():


def make_directivity_data():
data = make_far_field_data_array()
return DirectivityData(
monitor=DIRECTIVITY_MONITOR, directivity=DIRECTIVITY.copy(), axial_ratio=AXIALRATIO.copy()
monitor=DIRECTIVITY_MONITOR,
flux=FLUX.copy(),
Er=data,
Etheta=data,
Ephi=data,
Hr=data,
Htheta=data,
Hphi=data,
)


Expand Down
4 changes: 0 additions & 4 deletions tidy3d/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,11 +37,9 @@

# data
from .components.data.data_array import (
AxialRatioDataArray,
CellDataArray,
ChargeDataArray,
DiffractionDataArray,
DirectivityDataArray,
EMECoefficientDataArray,
EMEModeIndexDataArray,
EMEScalarFieldDataArray,
Expand Down Expand Up @@ -417,8 +415,6 @@ def set_logging_level(level: str) -> None:
"FieldProjectionCartesianDataArray",
"FieldProjectionKSpaceDataArray",
"DiffractionDataArray",
"DirectivityDataArray",
"AxialRatioDataArray",
"HeatDataArray",
"ChargeDataArray",
"FieldDataset",
Expand Down
51 changes: 0 additions & 51 deletions tidy3d/components/data/data_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -921,55 +921,6 @@ class FieldProjectionAngleDataArray(DataArray):
_data_attrs = {"long_name": "radiation vectors"}


class DirectivityDataArray(DataArray):
"""Directivity in the frequency domain as a function of angles theta and phi.
Directivity is a dimensionless quantity defined as the ratio of the radiation
intensity in a given direction to the average radiation intensity over all directions.
Example
-------
>>> f = np.linspace(1e14, 2e14, 10)
>>> r = np.atleast_1d(5)
>>> theta = np.linspace(0, np.pi, 10)
>>> phi = np.linspace(0, 2*np.pi, 20)
>>> coords = dict(r=r, theta=theta, phi=phi, f=f)
>>> values = np.random.random((len(r), len(theta), len(phi), len(f)))
>>> data = DirectivityDataArray(values, coords=coords)
"""

__slots__ = ()
_dims = ("r", "theta", "phi", "f")
_data_attrs = {"long_name": "radiation intensity"}


class AxialRatioDataArray(DataArray):
"""Axial Ratio (AR) in the frequency domain as a function of angles theta and phi.
AR is a dimensionless quantity defined as the ratio of the major axis to the minor
axis of the polarization ellipse.
Note
----
The axial ratio computation is based on:
Balanis, Constantine A., "Antenna Theory: Analysis and Design,"
John Wiley & Sons, Chapter 2.12 (2016).
Example
-------
>>> f = np.linspace(1e14, 2e14, 10)
>>> r = np.atleast_1d(5)
>>> theta = np.linspace(0, np.pi, 10)
>>> phi = np.linspace(0, 2*np.pi, 20)
>>> coords = dict(r=r, theta=theta, phi=phi, f=f)
>>> values = np.random.random((len(r), len(theta), len(phi), len(f)))
>>> data = AxialRatioDataArray(values, coords=coords)
"""

__slots__ = ()
_dims = ("r", "theta", "phi", "f")
_data_attrs = {"long_name": "axial ratio"}


class FieldProjectionCartesianDataArray(DataArray):
"""Far fields in frequency domain as a function of local x and y coordinates.
Expand Down Expand Up @@ -1267,8 +1218,6 @@ class IndexedDataArray(DataArray):
FieldProjectionCartesianDataArray,
FieldProjectionKSpaceDataArray,
DiffractionDataArray,
DirectivityDataArray,
AxialRatioDataArray,
FreqModeDataArray,
FreqDataArray,
TimeDataArray,
Expand Down
123 changes: 109 additions & 14 deletions tidy3d/components/data/monitor_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,10 +63,8 @@
)
from ..validators import enforce_monitor_fields_present, required_if_symmetry_present
from .data_array import (
AxialRatioDataArray,
DataArray,
DiffractionDataArray,
DirectivityDataArray,
EMEFreqModeDataArray,
FieldProjectionAngleDataArray,
FieldProjectionCartesianDataArray,
Expand Down Expand Up @@ -97,6 +95,7 @@

# how much to shift the adjoint field source for 0-D axes dimensions
SHIFT_VALUE_ADJ_FLD_SRC = 1e-5
AXIAL_RATIO_CAP = 100


class MonitorData(AbstractMonitorData, ABC):
Expand Down Expand Up @@ -2028,17 +2027,19 @@ class DirectivityData(MonitorData):
Example
-------
>>> from tidy3d import DirectivityDataArray, AxialRatioDataArray
>>> from tidy3d import FluxDataArray, FieldProjectionAngleDataArray
>>> f = np.linspace(1e14, 2e14, 10)
>>> r = np.atleast_1d(1e6)
>>> theta = np.linspace(0, np.pi, 10)
>>> phi = np.linspace(0, 2*np.pi, 20)
>>> coords = dict(r=r, theta=theta, phi=phi, f=f)
>>> values = np.random.random((len(r), len(theta), len(phi), len(f)))
>>> scalar_directivity_field = DirectivityDataArray(values, coords=coords)
>>> scalar_axial_ratio_field = AxialRatioDataArray(values, coords=coords)
>>> coords_flux = dict(f=f)
>>> values = (1+1j) * np.random.random((len(r), len(theta), len(phi), len(f)))
>>> flux_data = FluxDataArray(np.random.random(len(f)), coords=coords_flux)
>>> scalar_field = FieldProjectionAngleDataArray(values, coords=coords)
>>> monitor = DirectivityMonitor(center=(1,2,3), size=(2,2,2), freqs=f, name='n2f_monitor', phi=phi, theta=theta)
>>> data = DirectivityData(monitor=monitor, directivity=scalar_directivity_field, axial_ratio=scalar_axial_ratio_field)
>>> data = DirectivityData(monitor=monitor, flux=flux_data, Er=scalar_field, Etheta=scalar_field, Ephi=scalar_field,
... Hr=scalar_field, Htheta=scalar_field, Hphi=scalar_field)
"""

monitor: DirectivityMonitor = pd.Field(
Expand All @@ -2047,14 +2048,108 @@ class DirectivityData(MonitorData):
description="Monitor describing the angle-based projection grid on which to measure directivity data.",
)

directivity: DirectivityDataArray = pd.Field(
..., title="Directivity", description="Directivity with an angle-based projection grid."
)
flux: FluxDataArray = pd.Field(..., title="Flux", description="Flux values.")

axial_ratio: AxialRatioDataArray = pd.Field(
..., title="Axial Ratio", description="Axial ratio with an angle-based projection grid."
Er: FieldProjectionAngleDataArray = pd.Field(
...,
title="Er",
description="Spatial distribution of r-component of the electric field.",
)
Etheta: FieldProjectionAngleDataArray = pd.Field(
...,
title="Etheta",
description="Spatial distribution of the theta-component of the electric field.",
)
Ephi: FieldProjectionAngleDataArray = pd.Field(
...,
title="Ephi",
description="Spatial distribution of phi-component of the electric field.",
)
Hr: FieldProjectionAngleDataArray = pd.Field(
...,
title="Hr",
description="Spatial distribution of r-component of the magnetic field.",
)
Htheta: FieldProjectionAngleDataArray = pd.Field(
...,
title="Htheta",
description="Spatial distribution of theta-component of the magnetic field.",
)
Hphi: FieldProjectionAngleDataArray = pd.Field(
...,
title="Hphi",
description="Spatial distribution of phi-component of the magnetic field.",
)

@property
def directivity(self) -> DataArray:
"""Directivity in the frequency domain as a function of angles theta and phi.
Directivity is a dimensionless quantity defined as the ratio of the radiation
intensity in a given direction to the average radiation intensity over all directions."""

power_theta = 0.5 * np.real(self.Etheta * np.conj(self.Hphi))
power_phi = 0.5 * np.real(-self.Ephi * np.conj(self.Htheta))
power = power_theta + power_phi

# Normalize the aligned flux by dividing by (4 * pi * r^2) to adjust the flux for
# spherical surface area normalization
flux_normed = self.flux / (4 * np.pi * self.monitor.proj_distance**2)

return power / flux_normed

@property
def axial_ratio(self) -> DataArray:
"""Axial Ratio (AR) in the frequency domain as a function of angles theta and phi.
AR is a dimensionless quantity defined as the ratio of the major axis to the minor
axis of the polarization ellipse.
Note
----
The axial ratio computation is based on:
Balanis, Constantine A., "Antenna Theory: Analysis and Design,"
John Wiley & Sons, Chapter 2.12 (2016).
"""

# Calculate the terms of the equation
E1_abs_squared = np.abs(self.Etheta) ** 2
E2_abs_squared = np.abs(self.Ephi) ** 2
E1_squared = self.Etheta**2
E2_squared = self.Ephi**2

# Axial ratio calculations based on equations (2-65) to (2-67)
# from Balanis, Constantine A., "Antenna Theory: Analysis and Design,"
# John Wiley & Sons, 2016. These calculations use complex numbers
# directly and are equivalent to the referenced equations.
AR_numerator = E1_abs_squared + E2_abs_squared + np.abs(E1_squared + E2_squared)
AR_denominator = E1_abs_squared + E2_abs_squared - np.abs(E1_squared + E2_squared)

inds_zero = AR_numerator == 0
axial_ratio_inverse = xr.zeros_like(AR_numerator)
# Perform the axial ratio inverse calculation where the numerator is non-zero
axial_ratio_inverse = axial_ratio_inverse.where(
inds_zero, np.sqrt(np.abs(AR_denominator / AR_numerator))
)

# Cap the axial ratio values at 1 / AXIAL_RATIO_CAP
axial_ratio_inverse = axial_ratio_inverse.where(
axial_ratio_inverse >= 1 / AXIAL_RATIO_CAP, 1 / AXIAL_RATIO_CAP
)

return 1 / axial_ratio_inverse

@property
def left_polarization(self) -> DataArray:
"Electric far field for left-hand circular polarization"
"(counterclockwise component) with an angle-based projection grid."
return (self.Etheta - 1j * self.Ephi) / np.sqrt(2)

@property
def right_polarization(self) -> DataArray:
"Electric far field for right-hand circular polarization"
"(clockwise component) with an angle-based projection grid."
return (self.Etheta + 1j * self.Ephi) / np.sqrt(2)


ProjFieldType = Union[
FieldProjectionAngleDataArray,
Expand Down Expand Up @@ -2083,7 +2178,7 @@ class AbstractFieldProjectionData(MonitorData):

Er: ProjFieldType = pd.Field(
...,
title="Ephi",
title="Er",
description="Spatial distribution of r-component of the electric field.",
)
Etheta: ProjFieldType = pd.Field(
Expand All @@ -2098,7 +2193,7 @@ class AbstractFieldProjectionData(MonitorData):
)
Hr: ProjFieldType = pd.Field(
...,
title="Hphi",
title="Hr",
description="Spatial distribution of r-component of the magnetic field.",
)
Htheta: ProjFieldType = pd.Field(
Expand Down

0 comments on commit fc2a5c8

Please sign in to comment.