-
Notifications
You must be signed in to change notification settings - Fork 0
maintenance_guide
Garot Conklin edited this page Jun 1, 2025
·
1 revision
Complete guide to maintaining and operating ContractAI in production environments
This guide provides comprehensive instructions for maintaining ContractAI systems, including regular maintenance tasks, update procedures, health checks, and disaster recovery. It ensures the system remains secure, performant, and reliable.
graph TD
A[Maintenance Types] --> B[Regular Maintenance]
A --> C[Emergency Maintenance]
A --> D[Planned Updates]
B --> B1[Daily Checks]
B --> B2[Weekly Tasks]
B --> B3[Monthly Tasks]
C --> C1[Incident Response]
C --> C2[Security Patches]
C --> C3[Critical Updates]
D --> D1[Version Updates]
D --> D2[Infrastructure Updates]
D --> D3[Database Maintenance]
gantt
title ContractAI Maintenance Schedule
dateFormat YYYY-MM-DD
section Daily
Health Checks :daily, 2024-01-01, 2024-12-31
Log Analysis :daily, 2024-01-01, 2024-12-31
Backup Verification :daily, 2024-01-01, 2024-12-31
section Weekly
Performance Review :weekly, 2024-01-01, 2024-12-31
Security Scan :weekly, 2024-01-01, 2024-12-31
Database Optimization :weekly, 2024-01-01, 2024-12-31
section Monthly
System Updates :monthly, 2024-01-01, 2024-12-31
Capacity Planning :monthly, 2024-01-01, 2024-12-31
Compliance Check :monthly, 2024-01-01, 2024-12-31
graph TD
A[Start Health Check] --> B{Check System Status}
B -->|Healthy| C[Log Status]
B -->|Warning| D[Investigate]
B -->|Critical| E[Alert Team]
D --> F{Can Auto-recover?}
F -->|Yes| G[Execute Recovery]
F -->|No| E
G --> H{Recovery Successful?}
H -->|Yes| C
H -->|No| E
E --> I[Create Incident]
I --> J[Execute Runbook]
# health_check.py
from datetime import datetime
import psutil
import requests
from prometheus_client import CollectorRegistry, Gauge, push_to_gateway
class HealthChecker:
def __init__(self):
self.registry = CollectorRegistry()
self.metrics = {
'cpu_usage': Gauge('cpu_usage_percent', 'CPU Usage', registry=self.registry),
'memory_usage': Gauge('memory_usage_percent', 'Memory Usage', registry=self.registry),
'disk_usage': Gauge('disk_usage_percent', 'Disk Usage', registry=self.registry),
'api_latency': Gauge('api_latency_seconds', 'API Latency', registry=self.registry)
}
def check_system_health(self):
# Check CPU
self.metrics['cpu_usage'].set(psutil.cpu_percent())
# Check Memory
memory = psutil.virtual_memory()
self.metrics['memory_usage'].set(memory.percent)
# Check Disk
disk = psutil.disk_usage('/')
self.metrics['disk_usage'].set(disk.percent)
# Check API
try:
start_time = datetime.now()
response = requests.get('https://api.contractai.com/health')
latency = (datetime.now() - start_time).total_seconds()
self.metrics['api_latency'].set(latency)
except Exception as e:
logger.error(f"API health check failed: {e}")
# Push metrics
push_to_gateway('prometheus:9090', job='health_check', registry=self.registry)
graph TD
A[Start Performance Analysis] --> B[Collect Metrics]
B --> C[Analyze Trends]
C --> D{Performance OK?}
D -->|Yes| E[Update Baseline]
D -->|No| F[Identify Bottlenecks]
F --> G[Generate Report]
G --> H[Plan Optimization]
H --> I[Schedule Updates]
-- Weekly Database Maintenance
-- Analyze table statistics
ANALYZE agents;
ANALYZE incidents;
ANALYZE knowledge_base;
-- Update statistics
UPDATE pg_stat_statements
SET calls = 0, total_time = 0, rows = 0, shared_blks_hit = 0,
shared_blks_read = 0, shared_blks_written = 0,
shared_blks_dirtied = 0, temp_blks_read = 0, temp_blks_written = 0;
-- Vacuum analyze
VACUUM ANALYZE;
-- Check for bloat
SELECT schemaname, tablename,
pg_size_pretty(pg_total_relation_size(schemaname||'.'||tablename)) as total_size,
pg_size_pretty(pg_relation_size(schemaname||'.'||tablename)) as table_size,
pg_size_pretty(pg_total_relation_size(schemaname||'.'||tablename) -
pg_relation_size(schemaname||'.'||tablename)) as bloat_size
FROM pg_tables
WHERE schemaname = 'public'
ORDER BY pg_total_relation_size(schemaname||'.'||tablename) DESC;
graph TD
A[Start Update Process] --> B[Review Updates]
B --> C[Test in Staging]
C --> D{Tests Pass?}
D -->|No| E[Fix Issues]
E --> C
D -->|Yes| F[Schedule Production]
F --> G[Backup Systems]
G --> H[Apply Updates]
H --> I[Verify Systems]
I --> J{All Systems OK?}
J -->|No| K[Rollback]
J -->|Yes| L[Update Documentation]
# capacity_planning.py
import pandas as pd
import numpy as np
from sklearn.linear_model import LinearRegression
from datetime import datetime, timedelta
class CapacityPlanner:
def __init__(self):
self.metrics_db = "prometheus"
self.forecast_months = 3
def analyze_growth(self):
# Get historical data
query = """
SELECT
timestamp,
value
FROM metrics
WHERE metric_name IN ('cpu_usage', 'memory_usage', 'disk_usage')
AND timestamp > NOW() - INTERVAL '6 months'
"""
# Load data
df = pd.read_sql(query, self.metrics_db)
# Prepare for forecasting
X = np.array(range(len(df))).reshape(-1, 1)
y = df['value'].values
# Fit model
model = LinearRegression()
model.fit(X, y)
# Forecast
future_dates = np.array(range(len(df), len(df) + self.forecast_months * 30)).reshape(-1, 1)
forecast = model.predict(future_dates)
return {
'current_usage': df['value'].iloc[-1],
'forecast': forecast.tolist(),
'growth_rate': model.coef_[0],
'recommendation': self._generate_recommendation(forecast[-1])
}
def _generate_recommendation(self, forecast):
if forecast > 90:
return "CRITICAL: Immediate capacity increase required"
elif forecast > 75:
return "WARNING: Plan capacity increase within 1 month"
elif forecast > 60:
return "INFO: Monitor growth, plan for future increase"
else:
return "OK: Current capacity sufficient"
graph TD
A[Start Update] --> B[Create Update Branch]
B --> C[Update Dependencies]
C --> D[Run Tests]
D --> E{Tests Pass?}
E -->|No| F[Fix Issues]
F --> D
E -->|Yes| G[Update Documentation]
G --> H[Create Release]
H --> I[Deploy to Staging]
I --> J{Staging OK?}
J -->|No| K[Rollback]
J -->|Yes| L[Deploy to Production]
L --> M{Production OK?}
M -->|No| K
M -->|Yes| N[Monitor Systems]
#!/bin/bash
# update.sh
# Configuration
APP_DIR="/opt/contractai"
BACKUP_DIR="/backups/contractai"
VERSION=$1
# Validate version
if [ -z "$VERSION" ]; then
echo "Usage: $0 <version>"
exit 1
fi
# Create backup
echo "Creating backup..."
backup_name="contractai_$(date +%Y%m%d_%H%M%S)"
tar -czf "$BACKUP_DIR/$backup_name.tar.gz" "$APP_DIR"
# Update application
echo "Updating to version $VERSION..."
cd "$APP_DIR"
# Pull new version
git fetch origin
git checkout "v$VERSION"
# Update dependencies
python3.12 -m pip install -r requirements.txt
# Run migrations
alembic upgrade head
# Restart services
systemctl restart contractai
# Verify update
echo "Verifying update..."
if curl -s http://localhost:8000/health | grep -q "healthy"; then
echo "Update successful!"
else
echo "Update failed, rolling back..."
tar -xzf "$BACKUP_DIR/$backup_name.tar.gz" -C /
systemctl restart contractai
exit 1
fi
graph TD
A[Security Alert] --> B[Assess Impact]
B --> C{Urgent?}
C -->|Yes| D[Emergency Update]
C -->|No| E[Schedule Update]
D --> F[Create Hotfix]
F --> G[Test Hotfix]
G --> H{Tests Pass?}
H -->|No| I[Fix Issues]
I --> G
H -->|Yes| J[Deploy Hotfix]
E --> K[Plan Update]
K --> L[Regular Update Process]
# security_update.py
import subprocess
import logging
from datetime import datetime
import requests
class SecurityUpdater:
def __init__(self):
self.logger = logging.getLogger(__name__)
self.vulnerability_db = "https://vulndb.contractai.com"
def check_security_updates(self):
# Check for security updates
updates = self._get_security_updates()
for update in updates:
if update['severity'] == 'critical':
self._handle_critical_update(update)
else:
self._schedule_update(update)
def _handle_critical_update(self, update):
self.logger.warning(f"Critical security update: {update['id']}")
# Create hotfix branch
subprocess.run([
'git', 'checkout', '-b',
f'hotfix/security-{update["id"]}'
])
# Apply update
try:
subprocess.run([
'pip', 'install', '--upgrade',
f"{update['package']}=={update['version']}"
], check=True)
# Run tests
if self._run_tests():
self._deploy_hotfix()
else:
self.logger.error("Security update tests failed")
self._rollback_update()
except Exception as e:
self.logger.error(f"Security update failed: {e}")
self._rollback_update()
def _schedule_update(self, update):
# Schedule non-critical updates
scheduled_time = self._calculate_update_window()
self.logger.info(
f"Scheduling update {update['id']} for {scheduled_time}"
)
graph TD
A[System Health] --> B[Application Health]
A --> C[Database Health]
A --> D[Cache Health]
A --> E[Network Health]
B --> B1[API Status]
B --> B2[Worker Status]
B --> B3[Queue Status]
C --> C1[Connection Pool]
C --> C2[Query Performance]
C --> C3[Replication Lag]
D --> D1[Redis Status]
D --> D2[Cache Hit Rate]
D --> D3[Memory Usage]
E --> E1[Load Balancer]
E --> E2[DNS Resolution]
E --> E3[SSL Certificates]
# health_checker.py
from dataclasses import dataclass
from typing import Dict, List
import psycopg2
import redis
import requests
from prometheus_client import CollectorRegistry, Gauge
@dataclass
class HealthStatus:
component: str
status: str
details: Dict
timestamp: str
class SystemHealthChecker:
def __init__(self):
self.registry = CollectorRegistry()
self.metrics = {
'health_status': Gauge(
'component_health_status',
'Health status of system components',
['component'],
registry=self.registry
)
}
def check_all_components(self) -> List[HealthStatus]:
statuses = []
# Check application
statuses.append(self._check_application())
# Check database
statuses.append(self._check_database())
# Check cache
statuses.append(self._check_cache())
# Check network
statuses.append(self._check_network())
return statuses
def _check_application(self) -> HealthStatus:
try:
response = requests.get('https://api.contractai.com/health')
status = 'healthy' if response.status_code == 200 else 'unhealthy'
self.metrics['health_status'].labels('application').set(
1 if status == 'healthy' else 0
)
return HealthStatus(
component='application',
status=status,
details={'response_time': response.elapsed.total_seconds()},
timestamp=datetime.now().isoformat()
)
except Exception as e:
self.metrics['health_status'].labels('application').set(0)
return HealthStatus(
component='application',
status='unhealthy',
details={'error': str(e)},
timestamp=datetime.now().isoformat()
)
graph TD
A[Performance Monitoring] --> B[Collect Metrics]
B --> C[Analyze Patterns]
C --> D[Set Baselines]
D --> E[Detect Anomalies]
E --> F{Anomaly Detected?}
F -->|Yes| G[Investigate]
F -->|No| H[Update Baselines]
G --> I[Identify Cause]
I --> J[Plan Action]
J --> K[Execute Fix]
K --> L[Verify Improvement]
# performance_analyzer.py
import numpy as np
from scipy import stats
from prometheus_client import start_http_server, Gauge
import pandas as pd
class PerformanceAnalyzer:
def __init__(self):
self.metrics = {
'response_time': Gauge(
'api_response_time_seconds',
'API response time',
['endpoint']
),
'error_rate': Gauge(
'api_error_rate',
'API error rate',
['endpoint']
),
'throughput': Gauge(
'api_requests_per_second',
'API throughput',
['endpoint']
)
}
def analyze_performance(self, metric_data: pd.DataFrame):
# Calculate baseline
baseline = self._calculate_baseline(metric_data)
# Detect anomalies
anomalies = self._detect_anomalies(metric_data, baseline)
# Generate report
report = {
'baseline': baseline,
'anomalies': anomalies,
'recommendations': self._generate_recommendations(anomalies)
}
return report
def _detect_anomalies(self, data: pd.DataFrame, baseline: dict) -> list:
anomalies = []
for metric in baseline:
z_scores = stats.zscore(data[metric])
threshold = 3 # 3 standard deviations
for i, z_score in enumerate(z_scores):
if abs(z_score) > threshold:
anomalies.append({
'metric': metric,
'timestamp': data.index[i],
'value': data[metric].iloc[i],
'z_score': z_score,
'baseline': baseline[metric]
})
return anomalies
graph TD
A[Disaster Detected] --> B[Assess Impact]
B --> C{System Critical?}
C -->|Yes| D[Emergency Recovery]
C -->|No| E[Planned Recovery]
D --> F[Activate DR Site]
F --> G[Restore Data]
G --> H[Verify Systems]
H --> I{Recovery Successful?}
I -->|No| J[Escalate]
I -->|Yes| K[Monitor Systems]
E --> L[Schedule Recovery]
L --> M[Execute Recovery Plan]
M --> N[Verify Systems]
N --> O{Recovery Successful?}
O -->|No| P[Rollback]
O -->|Yes| Q[Update Documentation]
# disaster_recovery.py
import boto3
import subprocess
from datetime import datetime
import logging
class DisasterRecovery:
def __init__(self):
self.logger = logging.getLogger(__name__)
self.s3 = boto3.client('s3')
self.dr_bucket = 'contractai-dr'
def execute_recovery(self, disaster_type: str):
self.logger.info(f"Starting recovery for {disaster_type}")
try:
# Stop services
self._stop_services()
# Restore data
self._restore_data()
# Verify systems
if self._verify_systems():
self._start_services()
self.logger.info("Recovery completed successfully")
else:
self.logger.error("System verification failed")
self._rollback_recovery()
except Exception as e:
self.logger.error(f"Recovery failed: {e}")
self._rollback_recovery()
def _restore_data(self):
# Get latest backup
backup = self._get_latest_backup()
# Restore database
self._restore_database(backup['database'])
# Restore configurations
self._restore_configurations(backup['config'])
# Restore application data
self._restore_application_data(backup['application'])
def _verify_systems(self) -> bool:
checks = [
self._verify_database(),
self._verify_application(),
self._verify_network(),
self._verify_security()
]
return all(checks)
graph TD
A[Start Verification] --> B[Select Backup]
B --> C[Restore to Test]
C --> D[Run Tests]
D --> E{Tests Pass?}
E -->|No| F[Mark Backup Invalid]
E -->|Yes| G[Verify Data]
G --> H{Data Valid?}
H -->|No| F
H -->|Yes| I[Update Status]
I --> J[Cleanup Test]
# backup_verifier.py
import boto3
import subprocess
from datetime import datetime, timedelta
import psycopg2
import json
class BackupVerifier:
def __init__(self):
self.s3 = boto3.client('s3')
self.backup_bucket = 'contractai-backups'
def verify_backups(self, days: int = 7):
"""Verify backups for the last N days"""
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
backups = self._list_backups(start_date, end_date)
for backup in backups:
try:
# Create test environment
test_env = self._create_test_environment()
# Restore backup
self._restore_backup(backup, test_env)
# Run verification
if self._verify_backup(test_env):
self._update_backup_status(backup, 'verified')
else:
self._update_backup_status(backup, 'invalid')
# Cleanup
self._cleanup_test_environment(test_env)
except Exception as e:
self.logger.error(f"Backup verification failed: {e}")
self._update_backup_status(backup, 'verification_failed')
def _verify_backup(self, test_env: dict) -> bool:
checks = [
self._verify_database_integrity(test_env),
self._verify_application_data(test_env),
self._verify_configurations(test_env)
]
return all(checks)
- Maintenance Portal
- Knowledge Base
- Support Team
- Emergency Contact
Need help with maintenance? Contact our operations team at ops@contractai.com or visit our Maintenance Portal
- ContractAI - RAG-powered AI agents for enterprise infrastructure
- CloudOpsAI - AI-powered NOC automation platform
- fleXRP - XRP payment gateway system
- ✨ Black code formatting
- 🧪 100% test coverage
- 🔒 Automated security scanning
- 📊 SonarCloud integration
- 🤖 Dependabot enabled
- 📝 Comprehensive documentation
- GitHub Auth Library
- Datadog Dashboard Deployer
- Datadog Monitor Deployer
- Datadog Healthcheck Deployer
- Catchpoint Configurator
Built with ❤️ by the fleXRPL team
© 2025 fleXRPL Organization | [MIT License](https://github.com/fleXRPL/contractAI/blob/main/LICENSE)
© 2025 fleXRPL Organization | [MIT License](https://github.com/fleXRPL/contractAI/blob/main/LICENSE)
- Enterprise AI Whitepaper
- Business Model Analysis
- RAG System Outline
- Contract AI Executive Summary
- Contract AI Use Case Extensions
- Enterprise AI Market Disconnect