Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/ISSUE_TEMPLATE/performance_issue.yml
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
name: Performance issue
description: Report performance problems or optimisation opportunities
description: Report performance problems or optimization opportunities
title: "[PERFORMANCE] "
labels:
- performance
Expand Down
2 changes: 1 addition & 1 deletion .github/PULL_REQUEST_TEMPLATE/performance_optimization.yml
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ body:
- type: markdown
attributes:
value: |
Document the optimisation, methodology, and results so reviewers can validate gains and correctness.
Document the optimization, methodology, and results so reviewers can validate gains and correctness.
- type: textarea
id: summary
attributes:
Expand Down
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,7 @@ output = flash_dmattn_func(
attn_mask=attention_mask,
attn_bias=attention_bias,
is_causal=True,
scale=1.0/math.sqrt(head_dim),
softmax_scale=1.0/math.sqrt(head_dim),
)

print(f"Output shape: {output.shape}") # [1, 256, 2, 64]
Expand All @@ -216,7 +216,7 @@ output = flash_dmattn_func(
attn_mask=attention_mask,
attn_bias=attention_bias,
is_causal=True,
scale=1.0/math.sqrt(head_dim)
softmax_scale=1.0/math.sqrt(head_dim)
)

# Backward pass
Expand Down
4 changes: 2 additions & 2 deletions README_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -195,7 +195,7 @@ output = flash_dmattn_func(
attn_mask=attention_mask,
attn_bias=attention_bias,
is_causal=True,
scale=1.0/math.sqrt(head_dim),
softmax_scale=1.0/math.sqrt(head_dim),
)

print(f"输出形状: {output.shape}") # [1, 256, 2, 64]
Expand All @@ -216,7 +216,7 @@ output = flash_dmattn_func(
attn_mask=attention_mask,
attn_bias=attention_bias,
is_causal=True,
scale=1.0/math.sqrt(head_dim)
softmax_scale=1.0/math.sqrt(head_dim)
)

# 反向传播
Expand Down
6 changes: 3 additions & 3 deletions benchmarks/backward_equivalence.py
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,7 @@ def dynamic_mask_attention_cuda(
attn_mask=attn_mask, # mask: [batch, num_kv_heads, query_len, key_len]
attn_bias=attn_bias, # bias: [batch, num_kv_heads, query_len, key_len]
is_causal=is_causal, # causal masking
scale=scaling, # scaling factor
softmax_scale=scaling, # scaling factor
softcap=0.0,
deterministic=False,
return_attn_probs=False
Expand Down Expand Up @@ -351,7 +351,7 @@ def dynamic_mask_attention_triton(
attn_mask=attn_mask, # mask: [batch, num_heads, seqlen_q, seqlen_k]
attn_bias=attn_bias, # bias: [batch, num_heads, seqlen_q, seqlen_k]
is_causal=is_causal, # causal masking
scale=scaling # scaling factor
softmax_scale=scaling # scaling factor
)

# Backward pass
Expand Down Expand Up @@ -424,7 +424,7 @@ def dynamic_mask_attention_flex(
attn_mask=attn_mask, # attn_mask: [batch, num_heads, query_len, key_len]
attn_bias=attn_bias, # attn_bias: [batch, num_heads, query_len, key_len]
is_causal=is_causal, # is_causal: whether to apply causal masking
scale=scaling # scaling factor
softmax_scale=scaling # scaling factor
)

# Backward pass
Expand Down
8 changes: 4 additions & 4 deletions benchmarks/backward_performance.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,7 +183,7 @@ def scaled_dot_product_attention_backward(
key_states, # [batch, num_kv_heads, key_len, head_dim]
value_states, # [batch, num_kv_heads, key_len, head_dim]
attn_mask=causal_mask,
scale=scaling,
softmax_scale=scaling,
# is_causal=is_causal if query_len == key_len else False,
enable_gqa=True
)
Expand Down Expand Up @@ -262,7 +262,7 @@ def dynamic_mask_attention_backward_cuda(
attn_mask=attn_mask, # mask: [batch, num_kv_heads, query_len, key_len]
attn_bias=attn_bias, # bias: [batch, num_kv_heads, query_len, key_len]
is_causal=is_causal, # causal masking
scale=scaling, # scaling factor
softmax_scale=scaling, # scaling factor
softcap=0.0,
deterministic=False,
return_attn_probs=False
Expand Down Expand Up @@ -351,7 +351,7 @@ def dynamic_mask_attention_backward_triton(
attn_mask=attn_mask, # mask: [batch, num_heads, seqlen_q, seqlen_k]
attn_bias=attn_bias, # bias: [batch, num_heads, seqlen_q, seqlen_k]
is_causal=is_causal, # causal masking
scale=scaling # scaling factor
softmax_scale=scaling # scaling factor
)

torch.cuda.synchronize()
Expand Down Expand Up @@ -433,7 +433,7 @@ def dynamic_mask_attention_backward_flex(
attn_mask=attn_mask, # attn_mask: [batch, num_heads, query_len, key_len]
attn_bias=attn_bias, # attn_bias: [batch, num_heads, query_len, key_len]
is_causal=is_causal, # is_causal: whether to apply causal masking
scale=scaling # scaling factor
softmax_scale=scaling # scaling factor
)

torch.cuda.synchronize()
Expand Down
6 changes: 3 additions & 3 deletions benchmarks/forward_equivalence.py
Original file line number Diff line number Diff line change
Expand Up @@ -253,7 +253,7 @@ def dynamic_mask_attention_cuda(
attn_mask=attn_mask, # [batch, num_kv_heads, query_len, key_len]
attn_bias=attn_bias, # [batch, num_kv_heads, query_len, key_len]
is_causal=is_causal,
scale=scaling,
softmax_scale=scaling,
softcap=0.0,
deterministic=True,
return_attn_probs=return_softmax
Expand Down Expand Up @@ -329,7 +329,7 @@ def dynamic_mask_attention_triton(
attn_mask=attn_mask, # mask: [batch, num_heads, seqlen_q, seqlen_k]
attn_bias=attn_bias, # bias: [batch, num_heads, seqlen_q, seqlen_k]
is_causal=is_causal, # causal masking
scale=scaling # scaling factor
softmax_scale=scaling # scaling factor
)

return attn_outputs # [batch, query_len, num_heads, head_dim]
Expand Down Expand Up @@ -398,7 +398,7 @@ def dynamic_mask_attention_flex(
attn_mask=attn_mask, # attn_mask: [batch, num_heads, query_len, key_len]
attn_bias=attn_bias, # attn_bias: [batch, num_heads, query_len, key_len]
is_causal=is_causal, # is_causal: whether to apply causal masking
scale=scaling # scaling factor
softmax_scale=scaling # scaling factor
)

return attn_outputs # [batch, query_len, num_heads, head_dim]
Expand Down
8 changes: 4 additions & 4 deletions benchmarks/forward_performance.py
Original file line number Diff line number Diff line change
Expand Up @@ -186,7 +186,7 @@ def scaled_dot_product_attention_cuda(
key_states,
value_states,
attn_mask=causal_mask,
scale=scaling,
softmax_scale=scaling,
# is_causal=is_causal if query_len == key_len else False,
enable_gqa=True
)
Expand Down Expand Up @@ -262,7 +262,7 @@ def dynamic_mask_attention_cuda(
attn_mask=attn_mask, # [batch, num_kv_heads, query_len, key_len]
attn_bias=attn_bias, # [batch, num_kv_heads, query_len, key_len]
is_causal=is_causal,
scale=scaling,
softmax_scale=scaling,
softcap=0.0,
deterministic=False,
return_attn_probs=return_softmax
Expand Down Expand Up @@ -348,7 +348,7 @@ def dynamic_mask_attention_triton(
attn_mask=attn_mask, # mask: [batch, num_heads, seqlen_q, seqlen_k]
attn_bias=attn_bias, # bias: [batch, num_heads, seqlen_q, seqlen_k]
is_causal=is_causal, # causal masking
scale=scaling # scaling factor
softmax_scale=scaling # scaling factor
)

torch.cuda.synchronize()
Expand Down Expand Up @@ -427,7 +427,7 @@ def dynamic_mask_attention_flex(
attn_mask=attn_mask, # attn_mask: [batch, num_heads, query_len, key_len]
attn_bias=attn_bias, # attn_bias: [batch, num_heads, query_len, key_len]
is_causal=is_causal, # is_causal: whether to apply causal masking
scale=scaling # scaling factor
softmax_scale=scaling # scaling factor
)

torch.cuda.synchronize()
Expand Down
Loading