Skip to content

Commit

Permalink
initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
feldman committed Apr 5, 2020
0 parents commit 7bc20e0
Show file tree
Hide file tree
Showing 3 changed files with 351 additions and 0 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
*.pyc
346 changes: 346 additions & 0 deletions barcode_design.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,346 @@
# MIT License

# Copyright (c) 2020 David Jacob Feldman

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.


import argparse
from collections import Counter, defaultdict
from itertools import product
import logging
import os
import re
import time

import Levenshtein
import numpy as np
import pandas as pd
import scipy.sparse
import tqdm


logger = logging.getLogger(__name__)


def generate_all_barcodes(n):
if n > 11:
raise ValueError

return [''.join(x) for x in product(*(n*[list('ACTG')]))]


def calculate_gc(s):
s = s.upper()
return (s.count('G') + s.count('C')) / len(s)


def create_barcode_set(n, k, homopolymer, gc_min, gc_max,
limit=None, progress=tqdm):

df_bcs = (pd.DataFrame({'barcode': generate_all_barcodes(n)})
.assign(gc=lambda x: x['barcode'].apply(calculate_gc))
)
logger.info(f'Generated {len(df_bcs)} barcodes of length {n}')

barcodes = (df_bcs
.query('@gc_min < gc < @gc_max')
.loc[lambda x: ~(x['barcode'].apply(lambda y:
has_homopolymer(y, homopolymer)))]
['barcode'].pipe(list))
logger.info(f'Retained {len(barcodes)} barcodes after '
'filtering for GC content and homopolymers')

if limit:
rs = np.random.RandomState(0)
barcodes = rs.choice(barcodes, limit, replace=False)
logger.info('Assigning barcodes to hash buckets...')
hash_buckets = build_khash(barcodes, k)
logger.info('Calculating distances within buckets...')
D = sparse_dist(hash_buckets, k, progress=progress)
cm = sparse_view(barcodes, D)

logger.info(f'Selecting barcodes with minimum edit distance {k}...')
group_ids = [0] * len(barcodes)
selected = maxy_clique_groups(cm, group_ids)

selected_barcodes = [barcodes[x] for x in selected]
logger.info(f'Selected {len(selected_barcodes)} barcodes')

return (df_bcs
.query('barcode == @selected_barcodes')
.assign(n=n, k=k, homopolymer=homopolymer,
gc_min=gc_min, gc_max=gc_max))


def check_barcode_set(barcodes, k, distance='Levenshtein', max_to_check=1e6):
"""Returns list of barcode pairs that fail to satisfy distance k.
Default distance is
"""
if distance == 'Levenshtein':
distance = Levenshtein.distance
failures = []
for a in barcodes:
for b in barcodes:
d = distance(a, b)
max_to_check -= 1
if a != b and d < k:
failures += [(a, b, d)]
if max_to_check == 0:
return failures
return failures


def parse_args():
description = 'Design DNA barcodes with guaranteed edit distance'
parser = argparse.ArgumentParser(description=description)

parser.add_argument('--distance', type=int, default=2,
help='minimum pairwise edit distance')
parser.add_argument('--length', type=int, default=6,
help='barcode length')
parser.add_argument('--gc_min', type=int, default=30,
help='minimum GC percentage')
parser.add_argument('--gc_max', type=int, default=70,
help='maximum GC percentage')
parser.add_argument('--homopolymer', type=int, default=4,
help='maximum homopolymer')
parser.add_argument('--limit', type=int, default=0,
help='limit number of sequences input to design process, 0=no limit')
parser.add_argument('--max_to_check', type=int, default=int(1e6),
help='maximum number of barcode pairs to verify edit distance')
parser.add_argument('--verbosity', type=int, default=2,
help='logging level: <=2 logs info, <=3 logs warnings')

return parser.parse_args()


def handle_failures(barcodes, k, max_to_check=1e6, num_failures_to_print=10):
max_to_check = int(max_to_check)

logger.info(f'Validating barcodes...')
failures = check_barcode_set(barcodes, k, max_to_check=max_to_check)
if failures:
logger.warning('!! Failures detected !!')

for failure in range(num_failures_to_print):
logger.warning('{} {} distance={}'.format(*failure))
if len(failures) > num_failures_to_print:
logger.warning('...')

else:
if max_to_check > (len(barcodes)**2):
logger.info('All barcodes passed!')
else:
logger.info(f'Checked {max_to_check:,} barcode pairs, all passed!')

return failures


def main():
args = parse_args()
logging.basicConfig(format='%(asctime)s -- %(message)s',
datefmt='%Y-%m-%d %H:%M:%S')

logging_level = args.verbosity * 10
logging.root.setLevel(logging_level)
logging.root.handlers[0].addFilter(lambda x: 'NumExpr' not in x.msg)
progress = tqdm.tqdm if logging_level <= 20 else None

limit = None if args.limit == 0 else args.limit
df_bcs = create_barcode_set(args.length, args.distance, args.homopolymer,
args.gc_min/100, args.gc_max/100, limit=limit, progress=progress)

failures = handle_failures(
df_bcs['barcode'], args.distance, args.max_to_check)

failure_tag = '.failure' if failures else ''

filename = f'barcodes_n{args.length}_k{args.distance}{failure_tag}.csv'
filename = timestamp(filename)
df_bcs.to_csv(filename, index=None)

logger.info(f'Output written to {filename}')


### FUNCTIONS BELOW FROM OpticalPooledScreens repository ###
# https://github.com/feldman4/OpticalPooledScreens/blob/master/ops/pool_design.py ###

def has_homopolymer(x, n):
a = 'A'*n in x
t = 'T'*n in x
g = 'G'*n in x
c = 'C'*n in x
return a | t | g | c


def build_khash(xs, k, return_dict=False):
D = defaultdict(list)
for x in xs:
for h in khash(x, k):
D[h].append(x)

D = {k: sorted(set(v)) for k,v in D.items()}
if return_dict:
return D
else:
hash_buckets = list(D.values())
return hash_buckets


def khash(s, k):
"""Divide a string into substrings suitable for checking edit distance of
`k`. Two strings of the same length with Levenshtein edit distance less
than `k` will share at least one substring.
"""
n = len(s)
window = int(np.ceil((n - k) / float(k)))
s = s + s
arr = []
for i in range(n):
for j in (0, 1):
arr += [((i + j) % n, s[i:i+window])]
return arr


def sparse_dist(hash_buckets, k, distance=None, progress=None):
"""Entries less than k only.
"""
if distance is None:
distance = Levenshtein.distance
if progress is None:
progress = lambda x: x
D = {}
for xs in progress(hash_buckets):
for i, a in enumerate(xs):
for b in xs[i+1:]:
d = distance(a,b)
if d < k:
key = tuple(sorted((a,b)))
D[key] = d
return D


def sparse_view(xs, D, symmetric=True):
"""string barcodes
"""
assert len(xs) == len(set(xs))
mapper = {x: i for i, x in enumerate(xs)}
f = lambda x: mapper[x]
if len(D) == 0:
i, j, data = [], [], []
else:
i, j, data = zip(*[(f(a), f(b), v) for (a, b), v in D.items()])
# sparse matrix uses zero for missing values
data = np.array(data) >= 0
i = np.array(i)
j = np.array(j)

n = len(xs)
cm = scipy.sparse.coo_matrix((data, (i, j)), shape=(n, n))

if symmetric:
cm = (cm + cm.T).tocsr()

return cm


def maxy_clique_groups(cm, group_ids, verbose=False):
"""Prioritizes groups with the fewest selected barcodes.
Prioritizing groups with the fewest remaining barcodes could give
better results.
"""

# counts => group_id
d1 = defaultdict(set)
for id_, counts in Counter(group_ids).items():
d1[counts] |= {id_}

# group_id => indices
d2 = defaultdict(list)
for i, id_ in enumerate(group_ids):
d2[id_] += [i]
# .pop() takes from the end of the list
d2 = {k: v[::-1] for k,v in d2.items()}

# group_id => # selected
d3 = Counter()

selected = []
available = np.array(range(len(group_ids)))

while d1:
if verbose and (len(selected) % 1000) == 0:
print(len(selected))
# assert cm[selected, :][:, selected].sum() == 0

# pick a group_id from the lowest bin
count = min(d1.keys())
id_ = d1[count].pop()

# remove bin if empty
if len(d1[count]) == 0:
d1.pop(count)

# discard indices until we find a new one
index = None
while d2[id_]:
index = d2[id_].pop()
# approach 1: check for conflict every time
# cm[index, selected].sum() == 0
# approach 2: keep an array of available indices
if index in available:
break
else:
index = None

# keep index
if index:
selected.append(index)
d3[id_] += 1
available = available[available != index]
# get rid of incompatible barcodes
remove = cm[index, available].indices
mask = np.ones(len(available), dtype=bool)
mask[remove] = False
available = available[mask]


# move group_id to another bin
n = len(d2[id_])
if n > 0:
d1[n] |= {id_}

return selected


def timestamp(filename='', fmt='%Y%m%d_%H%M%S', sep='.'):
stamp = time.strftime(fmt)
pat= r'(.*)\.(.*)'
match = re.findall(pat, filename)
if match:
return sep.join([match[0][0], stamp, match[0][1]])
elif filename:
return sep.join([filename, stamp])
else:
return stamp


if __name__ == '__main__':
main()
4 changes: 4 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
pandas==1.0.1
python-Levenshtein==0.12.0
scipy==1.4.1
tqdm==4.40.2

0 comments on commit 7bc20e0

Please sign in to comment.