Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion src/qonnx/converters/keras.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,6 +135,7 @@ def _strip_qkeras_model(model):

def extract_quantizers(layer):
keras_cls_name, layer_cfg, layer_quantizers = extract_quantizers_from_layer(layer)
layer_cfg.pop("mask", None)
if layer_quantizers:
layer_quantizers = {
k: None if v == "None" else v for k, v in layer_quantizers.items()
Expand Down Expand Up @@ -256,4 +257,4 @@ def from_keras(
if output_path is not None:
onnx_model.save(output_path)

return onnx_model.model, external_storage
return onnx_model.model, external_storage
7 changes: 5 additions & 2 deletions src/qonnx/converters/qkeras/onnx.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
import numpy as np
import re
from tf2onnx.late_rewriters import channel_order_rewriters
from tf2onnx.onnx_opset.math import DirectOp, MatMul
from tf2onnx.onnx_opset.nn import BiasAdd, ConvOp
Expand Down Expand Up @@ -32,12 +33,14 @@ def _extract_node_name(onnx_node, keras_quantizers):
keras_quantizers: The dictionary of all the keras quantizers

"""
onnx_name = onnx_node.name
onnx_name = onnx_node.name
keras_names = keras_quantizers.keys()
for keras_name in keras_names:
match = "/" + keras_name + "/"
if match in onnx_name:
match_keras3 = r"/" + re.escape(keras_name) + r"_\d+/"
if match in onnx_name or re.search(match_keras3, onnx_name):
return keras_name

elif "Identity" in onnx_name:
onnx_input = onnx_node.input[0]
keras_input = keras_quantizers[keras_name]["input"]
Expand Down
7 changes: 6 additions & 1 deletion src/qonnx/converters/qkeras/qlayers.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,12 @@
import qkeras

# import tensorflow as tf
from qkeras.quantizers import BaseQuantizer
try:
# New QKeras
from qkeras.base_quantizer import BaseQuantizer
except ImportError:
# Old QKeras
from qkeras.quantizers import BaseQuantizer
from qkeras.utils import REGISTERED_LAYERS as QKERAS_LAYERS


Expand Down
36 changes: 18 additions & 18 deletions tests/keras/test_keras_convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,13 @@

@pytest.mark.parametrize("quantizer", act_quantizers_relu, ids=act_quantizers_relu_ids)
def test_qkeras_qactivation(quantizer, request):
x = x_in = Input((16), name="input")
x = x_in = Input(shape=(16,), name="input")
x = QActivation(activation=quantizer, name="act_0")(x)
model = Model(inputs=[x_in], outputs=[x])
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 16)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qactivation_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand Down Expand Up @@ -118,7 +118,7 @@ def test_keras_conv2d_conversion():

def test_keras_dense_conversion():
ini = tf.keras.initializers.RandomUniform(minval=-1.0, maxval=1.0)
x = x_in = Input((15), name="input")
x = x_in = Input(shape=(15,), name="input")
x = Dense(10, kernel_initializer=ini, bias_initializer=ini, name="dense1")(x)
x = Activation("relu", name="act0_m")(x)
x = Dense(10, kernel_initializer=ini, bias_initializer=ini, activation="relu", name="dense2")(x)
Expand Down Expand Up @@ -151,7 +151,7 @@ def test_qkeras_qdense_1(quantizers, request):
# Initialize the kernel & bias to RandonUniform within the range of the quantizers
k_ini = tf.keras.initializers.RandomUniform(minval=kq.min(), maxval=kq.max())
b_ini = tf.keras.initializers.RandomUniform(minval=bq.min(), maxval=bq.max())
x = x_in = Input((16), name="input")
x = x_in = Input(shape=(16,), name="input")
x = QDense(
32,
kernel_quantizer=kq,
Expand All @@ -164,7 +164,7 @@ def test_qkeras_qdense_1(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 16)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qdense1_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand All @@ -186,7 +186,7 @@ def test_qkeras_qdense_2(quantizers, request):
# Initialize the kernel & bias to RandonUniform within the range of the quantizers
k_ini = tf.keras.initializers.RandomUniform(minval=kq.min(), maxval=kq.max())
b_ini = tf.keras.initializers.RandomUniform(minval=bq.min(), maxval=bq.max())
x = x_in = Input((16), name="input")
x = x_in = Input(shape=(16,), name="input")
x = QDense(
32,
kernel_quantizer=kq,
Expand All @@ -208,7 +208,7 @@ def test_qkeras_qdense_2(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 16)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qdense2_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand All @@ -229,7 +229,7 @@ def test_qkeras_qdense_3(quantizers, request):
# Initialize the kernel & bias to RandonUniform within the range of the quantizers
k_ini = tf.keras.initializers.RandomUniform(minval=kq.min(), maxval=kq.max())
b_ini = tf.keras.initializers.RandomUniform(minval=bq.min(), maxval=bq.max())
x = x_in = Input((16), name="input")
x = x_in = Input(shape=(16,), name="input")
x = QDense(
32,
kernel_quantizer=kq,
Expand All @@ -253,7 +253,7 @@ def test_qkeras_qdense_3(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 16)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qdense3_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand All @@ -274,7 +274,7 @@ def test_qkeras_qdense_4(quantizers, request):
# Initialize the kernel & bias to RandonUniform within the range of the quantizers
k_ini = tf.keras.initializers.RandomUniform(minval=kq.min(), maxval=kq.max())
b_ini = tf.keras.initializers.RandomUniform(minval=bq.min(), maxval=bq.max())
x = x_in = Input((16), name="input")
x = x_in = Input(shape=(16,), name="input")
x = QDense(
32,
kernel_quantizer=kq,
Expand Down Expand Up @@ -309,7 +309,7 @@ def test_qkeras_qdense_4(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 16)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qdense4_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand Down Expand Up @@ -358,7 +358,7 @@ def test_qkeras_qconv2d_1(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 28, 28, 3)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qconv2d1_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand Down Expand Up @@ -408,7 +408,7 @@ def test_qkeras_qconv2d_2(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 28, 28, 3)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qconv2d2_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand Down Expand Up @@ -468,7 +468,7 @@ def test_qkeras_qconv2d_3(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 28, 28, 3)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qconv2d3_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand Down Expand Up @@ -543,7 +543,7 @@ def test_qkeras_qconv2d_conversion_1(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 28, 28, 1)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_qconv2d_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_qconv2d_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qconv2d_conversion1_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand Down Expand Up @@ -611,7 +611,7 @@ def test_qkeras_qconv2d_conversion_2(quantizers, request):
x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 28, 28, 1)).astype(dtype=np.float32)
y_qkeras = model.predict(x_test)

onnx_model, external_storage = from_keras(model, "test_qkeras_qconv2d_conversion", opset=9)
onnx_model, external_storage = from_keras(model, "test_qkeras_qconv2d_conversion", opset=13)
assert external_storage is None
model_path = f"model_test_qkeras_qconv2d_conversion2_{request.node.callspec.id}.onnx"
onnx.save(onnx_model, model_path)
Expand Down Expand Up @@ -653,7 +653,7 @@ def test_qkeras_qconv2d_conversion_2(quantizers, request):
# x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 16)).astype(dtype=np.float32)
# y_qkeras = model.predict(x_test)

# onnx_model, external_storage =from_keras(model, "test_qkeras_conversion", opset=9)
# onnx_model, external_storage =from_keras(model, "test_qkeras_conversion", opset=13)
# assert external_storage is None
# model_path = f"test_qkeras_broken1{request.node.callspec.id}.onnx"
# onnx.save(onnx_model, model_path)
Expand Down Expand Up @@ -695,7 +695,7 @@ def test_qkeras_qconv2d_conversion_2(quantizers, request):
# x_test = np.random.uniform(low=-1.0, high=1.0, size=(1, 16)).astype(dtype=np.float32)
# y_qkeras = model.predict(x_test)

# onnx_model, external_storage =from_keras(model, "test_qkeras_conversion", opset=9)
# onnx_model, external_storage =from_keras(model, "test_qkeras_conversion", opset=13)
# assert external_storage is None
# model_path = f"test_qkeras_broken2{request.node.callspec.id}.onnx"
# onnx.save(onnx_model, model_path)
Expand Down