Skip to content

Commit

Permalink
Update README and apply corrections
Browse files Browse the repository at this point in the history
  • Loading branch information
farrajota committed May 24, 2017
1 parent a2baafa commit 168d61c
Showing 1 changed file with 20 additions and 18 deletions.
38 changes: 20 additions & 18 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# Fast-RCNN as a module for torch7
# Fast-RCNN package for torch7

[Fast-RCNN](https://github.com/rbgirshick/fast-rcnn) implementation for Torch7 as a package with methods for training and testing an object detector network.


## Features

- Fast R-CNN as a package with simple API methods for training, testing, detecting and visualizing objects in images.
- Multi-threaded data loading/processing;
- Fast R-CNN as a package with a simple API for training, testing, detecting and visualizing objects in images.
- Multi-threaded data loading/preprocessing;
- Multi-GPU support;
- Common data augmentation techniques (color jitter, scaling, etc.);
- Pascal VOC / MS COCO mAP evaluation schemes.
Expand Down Expand Up @@ -57,8 +57,7 @@ local fastrcnn = require("fastrcnn")
This loads a table with the necessary methods for creating, training and testing a Fast R-CNN network. Also, it contains a method for detecting objects in images and for visualizing the detections with a window frame (requires `qt` to work).


<a name="train"></a>
### train ###
### train

```lua
fastrcnn.train(dataLoadTable, rois, model, modelParameters, opts)
Expand All @@ -68,15 +67,15 @@ Trains a model on a given dataset with some proposals.

#### Parameters

- `dataLoadTable`: Table with methods for loading data. (*type=table*)
- `dataLoadTable`: table with methods for loading data. (*type=table*)
- `rois`: Region-of-Interest bounding box proposals. (*type=table*)
- `model`: A Fast R-CNN network. (*type=table*)
- `modelParameters`: The model's parameters (color space, meanstd, pixel_scale and stride). (*type=table*)
- `opts`: Training options. (*type=table*)
- `model`: a Fast R-CNN style network. (*type=table*)
- `modelParameters`: model parameters (color space, meanstd, pixel_scale and stride). (*type=table*)
- `opts`: training options. (*type=table*)



<a name="test"></a>
### test ###
### test

```lua
fastrcnn.test(dataLoadTable, rois, model, modelParameters, opt)
Expand All @@ -93,21 +92,23 @@ Test a model on a dataset (mAP score).
- `opts`: Testing options. (*type=table*)


<a name="detector"></a>
### detector ###
### detector

```lua
imdetector = fastrcnn.Detector(model, modelParameters, opt)
```

Object detector class.
Object detector class. This provides a simple interface to image inference.

#### Parameters

- `model`: A Fast R-CNN network. (*type=table*)
- `modelParameters`: The model's parameters (color space, meanstd, pixel_scale and stride). (*type=table*)
- `opts`: Testing options. (*type=table*)


#### Object detector class.

```lua
scores, bboxes = imdetector:detect(im, proposals)
```
Expand All @@ -120,8 +121,7 @@ Receives an image and region proposals as input and outputs scores and bounding
- `proposals`: Region-of-Interest bounding box proposals (*type=torch.Tensor*)


<a name="utils"></a>
### utils ###
### utils

This package contains several utility methods for creating models, loading roi proposals from file or visualizing object detection with a window frame.

Expand All @@ -138,14 +138,16 @@ This package contains several utility methods for creating models, loading roi p

## Demos

This [repo](https://github.com/farrajota/fast-rcnn-examples) contains code examples on how to train+test an object detector using this module for the Pascal VOC 2007 dataset.
This [repo](https://github.com/farrajota/fast-rcnn-examples) contains code examples on how to train+test an object detector using this module for the Pascal VOC 2007, 2012 and MS COCO datasets.

Another [repo](https://github.com/farrajota/fast-rcnn-examples) contains code examples on how to train+test an object detector for pedestrian detection on the Caltech Pedestrian dataset.


## License

MIT license (see the LICENSE file)


## Acknowledges
## Acknowledgements

This package was heavily inspired by the following repositories: [Fast-RCNN](https://github.com/rbgirshick/fast-rcnn), [Fast-RCNN for Torch7](https://github.com/mahyarnajibi/fast-rcnn-torch) and [facebook/multipathnet](https://github.com/facebookresearch/multipathnet).

0 comments on commit 168d61c

Please sign in to comment.