Skip to content

Commit

Permalink
add iccv21 sr papers
Browse files Browse the repository at this point in the history
  • Loading branch information
ChaofWang authored Oct 22, 2021
1 parent c8f7d86 commit 9365546
Showing 1 changed file with 25 additions and 13 deletions.
38 changes: 25 additions & 13 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -32,21 +32,17 @@ More years papers, plase check Quick navigation
|Trilevel Neural Architecture Search for Efficient Single Image Super-Resolution | TrilevelNAS | [arxiv](https://arxiv.org/pdf/2101.06658.pdf) | - | Trilevel Architecture Search Space |
|SplitSR: An End-to-End Approach to Super-Resolution on Mobile Devices | SplitSR | [arxiv](https://arxiv.org/pdf/2101.07996.pdf) | - | lightweight,on Mobile Devices |
|Learning for Unconstrained Space-Time Video Super-Resolution | USTVSRNet | [arxiv](https://arxiv.org/pdf/2102.13011.pdf) | - | ***VSR***, Unconstrained video super-resolution,general-ized pixelshuffle layer. |
|ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic| ClassSR | [cvpr21](https://arxiv.org/pdf/2103.04039.pdf) | [code](https://github.com/Xiangtaokong/ClassSR) | classification,lightweight |
|Learning Frequency-aware Dynamic Network for Efficient Super-Resolution | FADN | [arxiv](https://arxiv.org/pdf/2103.08357.pdf) | - | Efficient SR,DCT,Mask Predictor,dynamic resblocks,frequency mask loss|
|ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic| ClassSR | [cvpr21](https://arxiv.org/pdf/2103.04039.pdf) | [code](https://github.com/Xiangtaokong/ClassSR) | classification,lightweight |
|Collapsible Linear Blocks for Super-Efficient Super Resolution | SESR | [arxiv](https://arxiv.org/pdf/2103.09404.pdf) | - | Super-Efficient SR, overparameterization|
|Self-Supervised Adaptation for Video Super-Resolution | Adapted VSR | [arxiv](https://arxiv.org/pdf/2103.10081.pdf) | - | ***VSR***, Self-Supervised Adaptationn|
|Generic Perceptual Loss for Modeling Structured Output Dependencies | Generic Perceptual Loss| [cvpr21](https://arxiv.org/pdf/2103.10571.pdf) | - | Random VGG w/o pretrianed, work at semantic segmentation, depthestimation and instance segmentation|
|Large Motion Video Super-Resolution with Dual Subnet and Multi-Stage Communicated Upsampling| U3D-RDN | [AAAI21](https://arxiv.org/pdf/2103.11744.pdf) | - | ***VSR***, Dual Subnet, Multi-stage Communicated Up-sampling|
|UltraSR: Spatial Encoding is a Missing Key for Implicit Image Function-based Arbitrary-Scale Super-Resolution| UltraSR | [arxiv](https://arxiv.org/pdf/2103.12716.pdf) | - | Implicit Image Function Based, Arbitrary-Scale|
|Designing a Practical Degradation Model for Deep Blind Image Super-Resolution | BSRNet/BSRGAN | [arxiv](https://arxiv.org/pdf/2103.14006.pdf) | - | randomly shuffled blur, downsampling and noise degradations for degradation model |
|D2C-SR: A Divergence to Convergence Approach for Image Super-Resolution | D2C-SR | [arxiv](https://arxiv.org/pdf/2103.14373.pdf) | - | RealSR, divergence stage with a triple loss ,convergence stage|
|Training a Better Loss Function for Image Restoration | MDF loss | [arxiv](https://arxiv.org/pdf/2103.14616.pdf) | [code](https://github.com/gfxdisp/mdf) | Multi-Scale Discriminative Feature loss|
|Transitive Learning: Exploring the Transitivity of Degradations for Blind Super-Resolution| TLSR | [arxiv](https://arxiv.org/pdf/2103.15290.pdf) | [code](https://github.com/YuanfeiHuang/TLSR) | Blind SR, Transitive Learning |
|Omniscient Video Super-Resolution | OVSR | [arxiv](https://arxiv.org/pdf/2103.15683.pdf) | - | ***VSR***, new framework, precursor net and successor net |
|Best-Buddy GANs for Highly Detailed Image Super-Resolution | Beby-GAN | [arxiv](https://arxiv.org/pdf/2103.15295.pdf) | [code](https://github.com/Jia-Research-Lab/Simple-SR) |relaxing the immutable one-to-one constraint, Best-Buddy Loss |
|Flow-based Kernel Prior with Application to Blind Super-Resolution | FKP | [cvpr21](https://arxiv.org/pdf/2103.15977.pdf) | [code](https://github.com/JingyunLiang/FKP) |Blind SR, flow-based kernel prio|
|Efficient Video Compression via Content-Adaptive Super-Resolution | SRVC | [arxiv](https://arxiv.org/pdf/2104.02322.pdf) | - |Video Compression, Adaptive Conv|
|Conditional Meta-Network for Blind Super-Resolution with Multiple Degradations | CMDSR | [arxiv](https://arxiv.org/pdf/2104.03926.pdf) | - |Blind SR, Conditional Meta-Network|
|Image Super-Resolution via Iterative Refinement | SR3 | [arxiv](https://arxiv.org/pdf/2104.07636.pdf) | - |Repeated Refinement, better than SOTA GAN|
|BAM: A Lightweight and Efficient Balanced Attention Mechanism for Single Image Super Resolution| BAM | [arxiv](https://arxiv.org/pdf/2104.07566.pdf) | [code](https://github.com/dandingbudanding/BAM_A_lightweight_but_efficient_Balanced_attention_mechanism_for_super_resolution) |balanced Attention Mechanism |
Expand All @@ -65,7 +61,6 @@ More years papers, plase check Quick navigation
|End-to-end Alternating Optimization for Blind Super Resolution | DAN | [arxiv](https://arxiv.org/pdf/2105.06878.pdf) |[code](https://github.com/greatlog/DAN) | Blind SR, Restorer and Estimator Alternating Optimization |
|Anchor-based Plain Net for Mobile Image Super-Resolution | ABPN | [arxiv](https://arxiv.org/pdf/2105.09750.pdf) |[code](https://github.com/NJU-Jet/SR_Mobile_Quantization) | MAI2021, mobile device SISR, INT8 Quantization |
|Extremely Lightweight Quantization RobustReal-Time Single-Image Super Resolution for Mobile Devices | XLSR | [arxiv](https://arxiv.org/pdf/2105.10288.pdf) |- | MAI2021, mobile device SISR Winner, INT8 Quantization |
|Fourier Space Losses for Efficient Perceptual Image Super-Resolution | - | [arxiv](https://arxiv.org/pdf/2105.09750.pdf) |- | Fourier space supervision loss |
|Robust Reference-based Super-Resolution via C2-Matching | C2-Matching | [arxiv](https://arxiv.org/pdf/2105.09750.pdf) |[code](https://github.com/yumingj/C2-Matching) | RefSR, ransformation gap, contrastive correspondence network, resolution gap, teacher-student correlation distillation |
|MASA-SR: Matching Acceleration and Spatial Adaptation forReference-Based Image Super-Resolution | MASA-SR | [cvpr21](https://arxiv.org/pdf/2106.02299.pdf) |[code](https://github.com/dvlab-research/MASA-SR) | RefSR, Match & Extraction Module , Spatial Adaptation Module|
|Noise Conditional Flow Model for Learning the Super-Resolution Space | NCSR | [arxiv](https://arxiv.org/pdf/2106.04428.pdf) |[code](https://github.com/younggeun-kim/NCSR) | better than GAN-based model,Flow-based, noise conditional layer |
Expand All @@ -92,16 +87,33 @@ More years papers, plase check Quick navigation
|Deep Burst Super-Resolution | BurstSR | [cvpr21](https://openaccess.thecvf.com/content/CVPR2021/papers/Bhat_Deep_Burst_Super-Resolution_CVPR_2021_paper.pdf) | - | multi-frame sr, new BurstSR dataset |
|Pre-Trained Image Processing Transformer |IPT | [cvpr21](https://openaccess.thecvf.com/content/CVPR2021/papers/Chen_Pre-Trained_Image_Processing_Transformer_CVPR_2021_paper.pdf) |[code](https://github.com/huawei-noah/Pretrained-IPT) | Pre-Trained Image Processing Transformer, Imagenet pretrained, dramatically improve performance |
|Blind Image Super-Resolution via ContrastiveRepresentation Learning | CRL-SR | [arxiv](https://arxiv.org/pdf/2107.00708.pdf) |- | blind SR, contrastive decoupling encoding, contrastive feature refinement |
|Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution | MANet | [iccv21](https://arxiv.org/pdf/2108.05302.pdf) |[code](https://github.com/JingyunLiang/MANet) | blind SR, spatially variant and invariant kernel, mutual affine network |
|Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling | HCFlow | [iccv21](https://arxiv.org/pdf/2108.05301.pdf) |[code](https://github.com/JingyunLiang/HCFlow) | SR/Rescale, learns a bijective mapping |
|End-to-End Adaptive Monte Carlo Denoising and Super-Resolution | - | [arxiv](https://arxiv.org/pdf/2108.06915.pdf) |- | Monte Carlo path tracing |
|Deep Reparametrization of Multi-Frame Super-Resolution and Denoising | - | [iccv21](https://arxiv.org/pdf/2108.08286.pdf) |- | Multi-Frame,deep reparametrization of the classical MAP objective |
|SwinIR: Image Restoration Using Swin Transformer | SwinIR | [arxiv](https://arxiv.org/pdf/2108.10257.pdf) |[code](https://github.com/JingyunLiang/SwinIR) |SISR, Swin Transformer, SOTA |
|edge–SR: Super–Resolution For The Masses | eSR | [arxiv](https://arxiv.org/pdf/2108.10335.pdf) |- |SISR, Edge device SR,one–layer architectures use interpretable mechanisms, Filling the gap between classic and deep learning architectures |
|Memory-Augmented Non-Local Attention for Video Super-Resolution | CSNLN | [arxiv](https://arxiv.org/pdf/2108.11048.pdf) |- |***VSR***, without frame alignment, memory-augmented attention module |
|Attention-based Multi-Reference Learning for Image Super-Resolution | AMRSR | [arxiv](https://arxiv.org/pdf/2108.13697.pdf) |[code](https://marcopesavento.github.io/AMRSR) |RefSR, without frame alignment, Hierarchical Attention-based Similarity |
|Simple and Efficient Unpaired Real-world Super-Resolution using Image Statistics | - | [arxiv](https://arxiv.org/pdf/2109.09071.pdf) |- |unpair SR,variance matching |
|Dual-Camera Super-Resolution with Aligned Attention Modules | - | [iccv21](https://arxiv.org/pdf/2109.01349.pdf) |[code](https://tengfei-wang.github.io/Dual-Camera-SR/index.html) | oral, dual camera SR, RefSR,self-supervised domain adaptation strategy |
|Learning A Single Network for Scale-Arbitrary Super-Resolution | arbSR | [iccv21](https://arxiv.org/pdf/2004.03791.pdf) |[code](https://github.com/LongguangWang/ArbSR) | SISR, scale-arbitrary SR |
|Improving Super-Resolution Performance using Meta-Attention Layers | - | [SPL](https://ieeexplore.ieee.org/document/9552573) |[code](https://github.com/um-dsrg/Super-Resolution-Meta-Attention-Networks) | SISR, meta-attention |
|EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation | - | [arxiv](https://arxiv.org/pdf/2110.07797.pdf) |[code](https://github.com/IndigoPurple/EFENet) | RefVSR, Enhanced Flow Estimation |
|EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation | EFENet | [arxiv](https://arxiv.org/pdf/2110.07797.pdf) |[code](https://github.com/IndigoPurple/EFENet) | RefVSR, Enhanced Flow Estimation |
|Learning A Single Network for Scale-Arbitrary Super-Resolution | arbSR | [iccv21](https://arxiv.org/pdf/2004.03791.pdf) |[code](https://github.com/LongguangWang/ArbSR) | SISR, scale-arbitrary SR |
|Dual-Camera Super-Resolution with Aligned Attention Modules | - | [iccv21](https://arxiv.org/pdf/2109.01349.pdf) |[code](https://tengfei-wang.github.io/Dual-Camera-SR/index.html) | oral, dual camera SR, RefSR,self-supervised domain adaptation strategy |
|Learning Frequency-aware Dynamic Network for Efficient Super-Resolution | FADN | [iccv21](https://arxiv.org/pdf/2103.08357.pdf) |- | Efficient SR,DCT,Mask Predictor,dynamic resblocks,frequency mask loss |
|Designing a Practical Degradation Model for Deep Blind Image Super-Resolution | BSRNet/BSRGAN | [iccv21](https://arxiv.org/pdf/2103.14006.pdf) |- | randomly shuffled blur, downsampling and noise degradations for degradation model |
|Fourier Space Losses for Efficient Perceptual Image Super-Resolution | - | [iccv21](https://arxiv.org/pdf/2105.09750.pdf) |- | Fourier space supervision loss |
|Omniscient Video Super-Resolution | OVSR | [iccv21](https://arxiv.org/pdf/2103.15683.pdf) |- | ***VSR***, new framework, precursor net and successor net |
|Efficient Video Compression via Content-Adaptive Super-Resolution | SRVC | [iccv21](https://arxiv.org/pdf/2104.02322.pdf) |- | Video Compression, Adaptive Conv |
|Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution | MANet | [iccv21](https://arxiv.org/pdf/2108.05302.pdf) |[code](https://github.com/JingyunLiang/MANet) | blind SR, spatially variant and invariant kernel, mutual affine network |
|Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling | HCFlow | [iccv21](https://arxiv.org/pdf/2108.05301.pdf) |[code](https://github.com/JingyunLiang/HCFlow) | SR/Rescale, learns a bijective mapping |
|Deep Reparametrization of Multi-Frame Super-Resolution and Denoising | - | [iccv21](https://arxiv.org/pdf/2108.08286.pdf) |- | Multi-Frame,deep reparametrization of the classical MAP objective |
|Attention-based Multi-Reference Learning for Image Super-Resolution | AMRSR | [iccv21](https://arxiv.org/pdf/2108.13697.pdf) |[code](https://marcopesavento.github.io/AMRSR) | RefSR, without frame alignment, Hierarchical Attention-based Similarity |
| COMISR: Compression-Informed Video Super-Resolution | COMISR | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Li_COMISR_Compression-Informed_Video_Super-Resolution_ICCV_2021_paper.pdf) | [code](https://github.com/google-research/google-research/tree/master/comisr) | ***VSR***, bi-directional recurrent, warping, detail-preserving flow estimation, Laplacian enhancement |
|Achieving on-Mobile Real-Time Super-Resolution with Neural Architecture and Pruning Search | - | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Zhan_Achieving_On-Mobile_Real-Time_Super-Resolution_With_Neural_Architecture_and_Pruning_Search_ICCV_2021_paper.pdf) |- | SISR, real-time sr, NAS |
|Event Stream Super-Resolution via Spatiotemporal Constraint Learning | - | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Li_Event_Stream_Super-Resolution_via_Spatiotemporal_Constraint_Learning_ICCV_2021_paper.pdf) |- | event stream SR |
|Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution | DFSA | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Magid_Dynamic_High-Pass_Filtering_and_Multi-Spectral_Attention_for_Image_Super-Resolution_ICCV_2021_paper.pdf) |- | SISR, SOTA, matrix multi-spectral channel attention |
|Context Reasoning Attention Network for Image Super-Resolution | CRAN | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Zhang_Context_Reasoning_Attention_Network_for_Image_Super-Resolution_ICCV_2021_paper.pdf) |- | SISR, SOTA, context reasoning attention |
|EvIntSR-Net: Event Guided Multiple Latent Frames Reconstruction and Super-Resolution | - | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Han_EvIntSR-Net_Event_Guided_Multiple_Latent_Frames_Reconstruction_and_Super-Resolution_ICCV_2021_paper.pdf) |- | EvIntSR |
|Deep Blind Video Super-Resolution | - | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Pan_Deep_Blind_Video_Super-Resolution_ICCV_2021_paper.pdf) |- | ***Blind VSR*** |
|Super Resolve Dynamic Scene From Continuous Spike Streams | MGSR | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Zhao_Super_Resolve_Dynamic_Scene_From_Continuous_Spike_Streams_ICCV_2021_paper.pdf) |- | Spike camera SR |
|Benchmarking Ultra-High-Definition Image Super-Resolution | MANet | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Zhang_Benchmarking_Ultra-High-Definition_Image_Super-Resolution_ICCV_2021_paper.pdf) |- | UHD SR dataset, 4K, 8K, SISR |
|Lucas-Kanade Reloaded: End-to-End Super-Resolution from Raw Image Bursts | - | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Lecouat_Lucas-Kanade_Reloaded_End-to-End_Super-Resolution_From_Raw_Image_Bursts_ICCV_2021_paper.pdf) |[code](https://github.com/bruno-31/lkburst) | Raw Image Bursts SR |
|Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective | - | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Wang_Unsupervised_Real-World_Super-Resolution_A_Domain_Adaptation_Perspective_ICCV_2021_paper.pdf) |- | unpaired realSR, domain adaptation |
|Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme | - | [iccv21](https://openaccess.thecvf.com/content/ICCV2021/papers/Yang_Real-World_Video_Super-Resolution_A_Benchmark_Dataset_and_a_Decomposition_Based_ICCV_2021_paper.pdf) |[code](https://github.com/IanYeung/RealVSR) | ***RealVSR*** dataset |

0 comments on commit 9365546

Please sign in to comment.