forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add tests for Reformer tokenizer (huggingface#6485)
- Loading branch information
Showing
1 changed file
with
253 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
# coding=utf-8 | ||
# Copyright 2018 The Google AI Language Team Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import os | ||
import unittest | ||
|
||
from transformers.file_utils import cached_property | ||
from transformers.testing_utils import require_torch, slow | ||
from transformers.tokenization_reformer import SPIECE_UNDERLINE, ReformerTokenizer | ||
|
||
from .test_tokenization_common import TokenizerTesterMixin | ||
|
||
|
||
SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model") | ||
|
||
|
||
class ReformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase): | ||
|
||
tokenizer_class = ReformerTokenizer | ||
|
||
def setUp(self): | ||
super().setUp() | ||
|
||
tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True) | ||
tokenizer.save_pretrained(self.tmpdirname) | ||
|
||
def test_full_tokenizer(self): | ||
tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True) | ||
|
||
tokens = tokenizer.tokenize("This is a test") | ||
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"]) | ||
|
||
self.assertListEqual( | ||
tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382], | ||
) | ||
|
||
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.") | ||
self.assertListEqual( | ||
tokens, | ||
[ | ||
SPIECE_UNDERLINE + "I", | ||
SPIECE_UNDERLINE + "was", | ||
SPIECE_UNDERLINE + "b", | ||
"or", | ||
"n", | ||
SPIECE_UNDERLINE + "in", | ||
SPIECE_UNDERLINE + "", | ||
"9", | ||
"2", | ||
"0", | ||
"0", | ||
"0", | ||
",", | ||
SPIECE_UNDERLINE + "and", | ||
SPIECE_UNDERLINE + "this", | ||
SPIECE_UNDERLINE + "is", | ||
SPIECE_UNDERLINE + "f", | ||
"al", | ||
"s", | ||
"é", | ||
".", | ||
], | ||
) | ||
ids = tokenizer.convert_tokens_to_ids(tokens) | ||
self.assertListEqual( | ||
ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], | ||
) | ||
|
||
back_tokens = tokenizer.convert_ids_to_tokens(ids) | ||
self.assertListEqual( | ||
back_tokens, | ||
[ | ||
SPIECE_UNDERLINE + "I", | ||
SPIECE_UNDERLINE + "was", | ||
SPIECE_UNDERLINE + "b", | ||
"or", | ||
"n", | ||
SPIECE_UNDERLINE + "in", | ||
SPIECE_UNDERLINE + "", | ||
"<unk>", | ||
"2", | ||
"0", | ||
"0", | ||
"0", | ||
",", | ||
SPIECE_UNDERLINE + "and", | ||
SPIECE_UNDERLINE + "this", | ||
SPIECE_UNDERLINE + "is", | ||
SPIECE_UNDERLINE + "f", | ||
"al", | ||
"s", | ||
"<unk>", | ||
".", | ||
], | ||
) | ||
|
||
@cached_property | ||
def big_tokenizer(self): | ||
return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment") | ||
|
||
@slow | ||
def test_tokenization_base_easy_symbols(self): | ||
symbols = "Hello World!" | ||
original_tokenizer_encodings = [126, 32, 262, 152, 38, 72, 287] | ||
|
||
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) | ||
|
||
@slow | ||
def test_tokenization_base_hard_symbols(self): | ||
symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' | ||
original_tokenizer_encodings = [ | ||
108, | ||
265, | ||
24, | ||
111, | ||
4, | ||
258, | ||
156, | ||
35, | ||
28, | ||
275, | ||
3, | ||
259, | ||
297, | ||
260, | ||
84, | ||
4, | ||
35, | ||
110, | ||
44, | ||
8, | ||
259, | ||
91, | ||
268, | ||
21, | ||
11, | ||
209, | ||
274, | ||
109, | ||
266, | ||
277, | ||
117, | ||
86, | ||
93, | ||
315, | ||
258, | ||
278, | ||
258, | ||
277, | ||
258, | ||
0, | ||
258, | ||
288, | ||
258, | ||
319, | ||
258, | ||
0, | ||
258, | ||
0, | ||
258, | ||
0, | ||
258, | ||
0, | ||
258, | ||
287, | ||
258, | ||
315, | ||
258, | ||
289, | ||
258, | ||
278, | ||
99, | ||
269, | ||
266, | ||
262, | ||
8, | ||
259, | ||
241, | ||
4, | ||
217, | ||
230, | ||
268, | ||
266, | ||
55, | ||
168, | ||
106, | ||
75, | ||
193, | ||
266, | ||
223, | ||
27, | ||
49, | ||
26, | ||
282, | ||
25, | ||
264, | ||
299, | ||
19, | ||
26, | ||
0, | ||
258, | ||
277, | ||
117, | ||
86, | ||
93, | ||
176, | ||
183, | ||
270, | ||
11, | ||
262, | ||
42, | ||
61, | ||
265, | ||
] | ||
|
||
self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols)) | ||
|
||
@slow | ||
@require_torch | ||
def test_torch_encode_plus_sent_to_model(self): | ||
import torch | ||
from transformers import ReformerModel, ReformerConfig | ||
|
||
# Build sequence | ||
first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10] | ||
sequence = " ".join(first_ten_tokens) | ||
encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt") | ||
batch_encoded_sequence = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt") | ||
|
||
config = ReformerConfig() | ||
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) | ||
config.axial_pos_shape = encoded_sequence["input_ids"].shape | ||
model = ReformerModel(config) | ||
|
||
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) | ||
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size | ||
|
||
with torch.no_grad(): | ||
model(**encoded_sequence) | ||
model(**batch_encoded_sequence) |