Skip to content

Commit

Permalink
Add tests for Reformer tokenizer (huggingface#6485)
Browse files Browse the repository at this point in the history
  • Loading branch information
D-Roberts authored Aug 20, 2020
1 parent f9d280a commit c945450
Showing 1 changed file with 253 additions and 0 deletions.
253 changes: 253 additions & 0 deletions tests/test_tokenization_reformer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import os
import unittest

from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch, slow
from transformers.tokenization_reformer import SPIECE_UNDERLINE, ReformerTokenizer

from .test_tokenization_common import TokenizerTesterMixin


SAMPLE_VOCAB = os.path.join(os.path.dirname(os.path.abspath(__file__)), "fixtures/test_sentencepiece.model")


class ReformerTokenizationTest(TokenizerTesterMixin, unittest.TestCase):

tokenizer_class = ReformerTokenizer

def setUp(self):
super().setUp()

tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.save_pretrained(self.tmpdirname)

def test_full_tokenizer(self):
tokenizer = ReformerTokenizer(SAMPLE_VOCAB, keep_accents=True)

tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])

self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens), [285, 46, 10, 170, 382],
)

tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4],
)

back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
],
)

@cached_property
def big_tokenizer(self):
return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment")

@slow
def test_tokenization_base_easy_symbols(self):
symbols = "Hello World!"
original_tokenizer_encodings = [126, 32, 262, 152, 38, 72, 287]

self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))

@slow
def test_tokenization_base_hard_symbols(self):
symbols = 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
original_tokenizer_encodings = [
108,
265,
24,
111,
4,
258,
156,
35,
28,
275,
3,
259,
297,
260,
84,
4,
35,
110,
44,
8,
259,
91,
268,
21,
11,
209,
274,
109,
266,
277,
117,
86,
93,
315,
258,
278,
258,
277,
258,
0,
258,
288,
258,
319,
258,
0,
258,
0,
258,
0,
258,
0,
258,
287,
258,
315,
258,
289,
258,
278,
99,
269,
266,
262,
8,
259,
241,
4,
217,
230,
268,
266,
55,
168,
106,
75,
193,
266,
223,
27,
49,
26,
282,
25,
264,
299,
19,
26,
0,
258,
277,
117,
86,
93,
176,
183,
270,
11,
262,
42,
61,
265,
]

self.assertListEqual(original_tokenizer_encodings, self.big_tokenizer.encode(symbols))

@slow
@require_torch
def test_torch_encode_plus_sent_to_model(self):
import torch
from transformers import ReformerModel, ReformerConfig

# Build sequence
first_ten_tokens = list(self.big_tokenizer.get_vocab().keys())[:10]
sequence = " ".join(first_ten_tokens)
encoded_sequence = self.big_tokenizer.encode_plus(sequence, return_tensors="pt")
batch_encoded_sequence = self.big_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")

config = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
config.axial_pos_shape = encoded_sequence["input_ids"].shape
model = ReformerModel(config)

# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size

with torch.no_grad():
model(**encoded_sequence)
model(**batch_encoded_sequence)

0 comments on commit c945450

Please sign in to comment.