Skip to content

Commit

Permalink
Replace BertLayerNorm with LayerNorm (huggingface#14385)
Browse files Browse the repository at this point in the history
Running Movement pruning experiments with the newest HuggingFace would crash due to non-existing BertLayerNorm.
  • Loading branch information
eldarkurtic authored Nov 15, 2021
1 parent a67d47b commit 9fd937e
Showing 1 changed file with 5 additions and 5 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
from emmental.modules import MaskedLinear
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.modeling_utils import PreTrainedModel, prune_linear_layer
from transformers.models.bert.modeling_bert import ACT2FN, BertLayerNorm, load_tf_weights_in_bert
from transformers.models.bert.modeling_bert import ACT2FN, load_tf_weights_in_bert


logger = logging.getLogger(__name__)
Expand All @@ -47,7 +47,7 @@ def __init__(self, config):

# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)

def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
Expand Down Expand Up @@ -182,7 +182,7 @@ def __init__(self, config):
mask_init=config.mask_init,
mask_scale=config.mask_scale,
)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)

def forward(self, hidden_states, input_tensor, threshold):
Expand Down Expand Up @@ -275,7 +275,7 @@ def __init__(self, config):
mask_init=config.mask_init,
mask_scale=config.mask_scale,
)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)

def forward(self, hidden_states, input_tensor, threshold):
Expand Down Expand Up @@ -398,7 +398,7 @@ def _init_weights(self, module):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, BertLayerNorm):
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
Expand Down

0 comments on commit 9fd937e

Please sign in to comment.