Skip to content
This repository has been archived by the owner on Jul 1, 2024. It is now read-only.

Commit

Permalink
Plot histograms of parameters to tensorboard (#432)
Browse files Browse the repository at this point in the history
Summary:
Pull Request resolved: #432

- Plot the histogram of weights for every parameter in the model at the end of every train phase.
- Updated the various scalars plotted to Tensorboard to have their own tags, just like "Speed" to organize things better

Adding the activations and gradients is non-trivial since they depend on the input, so skipping that for now.

Reviewed By: vreis

Differential Revision: D20427992

fbshipit-source-id: b46b12f3dbf6ac4d49f318b0b2d77548fc2d98a9
  • Loading branch information
mannatsingh authored and facebook-github-bot committed Mar 16, 2020
1 parent 9f405b2 commit 15a89ea
Show file tree
Hide file tree
Showing 2 changed files with 29 additions and 19 deletions.
31 changes: 20 additions & 11 deletions classy_vision/hooks/tensorboard_plot_hook.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,16 @@ def on_phase_start(self, task: "tasks.ClassyTask") -> None:
self.wall_times = []
self.num_steps_global = []

if not is_master():
return

# log the parameters before training starts
if task.train and task.train_phase_idx == 0:
for name, parameter in task.base_model.named_parameters():
self.tb_writer.add_histogram(
f"Parameters/{name}", parameter, global_step=-1
)

def on_step(self, task: "tasks.ClassyTask") -> None:
"""Store the observed learning rates."""
if self.learning_rates is None:
Expand Down Expand Up @@ -92,27 +102,26 @@ def on_phase_end(self, task: "tasks.ClassyTask") -> None:
logging.info(f"Plotting to Tensorboard for {phase_type} phase {phase_type_idx}")

phase_type = task.phase_type
loss_key = f"{phase_type}_loss"
learning_rate_key = f"{phase_type}_learning_rate_updates"
learning_rate_key = f"Learning Rate/{phase_type}"

if task.train:
for loss, learning_rate, global_step, wall_time in zip(
task.losses, self.learning_rates, self.num_steps_global, self.wall_times
for learning_rate, global_step, wall_time in zip(
self.learning_rates, self.num_steps_global, self.wall_times
):
loss /= task.get_batchsize_per_replica()
self.tb_writer.add_scalar(
loss_key, loss, global_step=global_step, walltime=wall_time
)
self.tb_writer.add_scalar(
learning_rate_key,
learning_rate,
global_step=global_step,
walltime=wall_time,
)
for name, parameter in task.base_model.named_parameters():
self.tb_writer.add_histogram(
f"Parameters/{name}", parameter, global_step=phase_type_idx
)

loss_avg = sum(task.losses) / (batches * task.get_batchsize_per_replica())

loss_key = "avg_{phase_type}_loss".format(phase_type=task.phase_type)
loss_key = "Losses/{phase_type}".format(phase_type=task.phase_type)
self.tb_writer.add_scalar(loss_key, loss_avg, global_step=phase_type_idx)

# plot meters which return a dict
Expand All @@ -122,13 +131,13 @@ def on_phase_end(self, task: "tasks.ClassyTask") -> None:
continue
for name, value in meter.value.items():
if isinstance(value, float):
meter_key = f"{phase_type}_{meter.name}_{name}"
meter_key = f"Meters/{phase_type}/{meter.name}/{name}"
self.tb_writer.add_scalar(
meter_key, value, global_step=phase_type_idx
)
else:
log.warn(
f"Skipping meter name {meter.name}_{name} with value: {value}"
f"Skipping meter name {meter.name}/{name} with value: {value}"
)
continue

Expand Down
17 changes: 9 additions & 8 deletions test/manual/hooks_tensorboard_plot_hook_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,24 +93,20 @@ def test_writer(self, mock_is_master_func: mock.MagicMock) -> None:
if master:
# add_scalar() should have been called with the right scalars
if train:
loss_key = f"{phase_type}_loss"
learning_rate_key = f"{phase_type}_learning_rate_updates"
summary_writer.add_scalar.assert_any_call(
loss_key, mock.ANY, global_step=mock.ANY, walltime=mock.ANY
)
learning_rate_key = f"Learning Rate/{phase_type}"
summary_writer.add_scalar.assert_any_call(
learning_rate_key,
mock.ANY,
global_step=mock.ANY,
walltime=mock.ANY,
)
avg_loss_key = f"avg_{phase_type}_loss"
avg_loss_key = f"Losses/{phase_type}"
summary_writer.add_scalar.assert_any_call(
avg_loss_key, mock.ANY, global_step=mock.ANY
)
for meter in task.meters:
for name in meter.value:
meter_key = f"{phase_type}_{meter.name}_{name}"
meter_key = f"Meters/{phase_type}/{meter.name}/{name}"
summary_writer.add_scalar.assert_any_call(
meter_key, mock.ANY, global_step=mock.ANY
)
Expand All @@ -135,6 +131,11 @@ def __init__(self):
def add_scalar(self, key, value, global_step=None, walltime=None) -> None:
self.scalar_logs[key] = self.scalar_logs.get(key, []) + [value]

def add_histogram(
self, key, value, global_step=None, walltime=None
) -> None:
return

def flush(self):
return

Expand All @@ -154,6 +155,6 @@ def flush(self):

# We have 20 samples, batch size is 10. Each epoch is done in two steps.
self.assertEqual(
writer.scalar_logs["train_learning_rate_updates"],
writer.scalar_logs["Learning Rate/train"],
[0, 1 / 6, 2 / 6, 3 / 6, 4 / 6, 5 / 6],
)

0 comments on commit 15a89ea

Please sign in to comment.